import Mathlib.Analysis.Analytic.IsolatedZeros import Mathlib.Analysis.Complex.Basic theorem AnalyticAt.order_mul {f₁ f₂ : ℂ → ℂ} {z₀ : ℂ} (hf₁ : AnalyticAt ℂ f₁ z₀) (hf₂ : AnalyticAt ℂ f₂ z₀) : (AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by by_cases h₂f₁ : hf₁.order = ⊤ · simp [h₂f₁] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · by_cases h₂f₂ : hf₂.order = ⊤ · simp [h₂f₂] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁)) obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂)) rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add] rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)] use g₁ * g₂ constructor · exact AnalyticAt.mul h₁g₁ h₁g₂ · constructor · simp; tauto · obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁ obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂ rw [eventually_nhds_iff] use t₁ ∩ t₂ constructor · intro y hy rw [h₁t₁ y hy.1, h₁t₂ y hy.2] simp; ring · constructor · exact IsOpen.inter h₂t₁ h₂t₂ · exact Set.mem_inter h₃t₁ h₃t₂ theorem AnalyticAt.order_eq_zero_iff {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order = 0 ↔ f z₀ ≠ 0 := by have : (0 : ENat) = (0 : Nat) := by rfl rw [this, AnalyticAt.order_eq_nat_iff hf 0] constructor · intro hz obtain ⟨g, _, h₂g, h₃g⟩ := hz simp at h₃g rw [Filter.Eventually.self_of_nhds h₃g] tauto · intro hz use f constructor · exact hf · constructor · exact hz · simp