import Mathlib.Analysis.Complex.CauchyIntegral open ComplexConjugate /- logAbs of a product is sum of logAbs of factors -/ lemma logAbs_mul : ∀ z₁ z₂ : ℂ, z₁ ≠ 0 → z₂ ≠ 0 → Real.log (Complex.abs (z₁ * z₂)) = Real.log (Complex.abs z₁) + Real.log (Complex.abs z₂) := by intro z₁ z₂ z₁Hyp z₂Hyp rw [Complex.instNormedFieldComplex.proof_2 z₁ z₂] exact Real.log_mul ((AbsoluteValue.ne_zero_iff Complex.abs).mpr z₁Hyp) ((AbsoluteValue.ne_zero_iff Complex.abs).mpr z₂Hyp) lemma absAndProd : ∀ z : ℂ, Complex.abs z = Real.sqrt ( (z * conj z).re ) := by intro z simp rfl #check Complex.log_mul_eq_add_log_iff #check Complex.arg_eq_pi_iff lemma logAbsXX : ∀ z : ℂ, z ≠ 0 → Real.log (Complex.abs z) = (1 / 2) * Complex.log z + (1 / 2) * Complex.log (conj z) := by intro z z₁Hyp by_cases argHyp : Complex.arg z = Real.pi -- Show pos: Complex.arg z = Real.pi have : conj z = z := by apply Complex.conj_eq_iff_im.2 rw [Complex.arg_eq_pi_iff] at argHyp exact argHyp.right rw [this] sorry -- Show pos: Complex.arg z ≠ Real.pi have t₁ : Complex.abs z = Real.sqrt (Complex.normSq z) := by exact rfl rw [t₁] have t₂ : 0 ≤ Complex.normSq z := by exact Complex.normSq_nonneg z rw [ Real.log_sqrt t₂ ] have t₃ : Real.log (Complex.normSq z) = Complex.log (Complex.normSq z) := by apply Complex.ofReal_log exact t₂ simp rw [t₃] rw [Complex.normSq_eq_conj_mul_self] have t₄ : conj z ≠ 0 := by exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr z₁Hyp let XX := Complex.log_mul_eq_add_log_iff this z₁Hyp sorry