import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Nevanlinna.cauchyRiemann noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by intro f let fx := fun w ↦ fderiv ℝ f w 1 let fxx := fun z ↦ fderiv ℝ fx z 1 let fy := fun w ↦ fderiv ℝ f w Complex.I let fyy := fun z ↦ fderiv ℝ fy z Complex.I exact fun z ↦ (fxx z) + (fyy z) def Harmonic (f : ℂ → ℂ) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : Differentiable ℂ f → Harmonic f := by intro h constructor · -- Complex.reCLM ∘ f is two times real continuously differentiable exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h) · -- Laplace of f is zero intro z unfold Complex.laplace simp conv => left right arg 1 arg 2 intro z rw [CauchyRiemann₁ (h z)] have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by intro z sorry have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x = Complex.I * ((fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) x) := by intro x rw [fderiv_const_mul] simp exact t₀ z rw [t₁] have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I = (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by sorry rw [t₂] conv => left right arg 2 arg 1 arg 2 intro z rw [CauchyRiemann₁ (h z)] rw [t₁] rw [← mul_assoc] simp