import Mathlib.Analysis.NormedSpace.Pointwise import Mathlib.Topology.MetricSpace.Thickening import Mathlib.Analysis.Complex.CauchyIntegral import Nevanlinna.holomorphic_examples theorem harmonic_meanValue {f : ℂ → ℝ} {z : ℂ} (ρ R : ℝ) (hR : 0 < R) (hρ : R < ρ) (hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) : (∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z := by obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by intro x hx exact gt_trans hρ hx have reg₀F : DifferentiableOn ℂ F (Metric.ball z ρ) := by intro x hx apply DifferentiableAt.differentiableWithinAt apply HolomorphicAt.differentiableAt (h₁F x _) exact hx have reg₁F : DifferentiableOn ℂ F (Metric.ball z R) := by intro x hx apply DifferentiableAt.differentiableWithinAt apply HolomorphicAt.differentiableAt (h₁F x _) exact hrρ hx have : (∮ (x : ℂ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by let s : Set ℂ := ∅ let hs : s.Countable := Set.countable_empty let _ : ℂ := 0 have hw : (z : ℂ) ∈ Metric.ball z R := Metric.mem_ball_self hR have hc : ContinuousOn F (Metric.closedBall z R) := by apply reg₀F.continuousOn.mono intro x hx simp at hx simp linarith have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt ℂ F x := by intro x hx let A := reg₁F x hx.1 apply A.differentiableAt apply (IsOpen.mem_nhds_iff ?hs).mpr exact hx.1 exact Metric.isOpen_ball let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd simp at CIF assumption unfold circleIntegral at this simp_rw [deriv_circleMap] at this have t₁ {θ : ℝ} : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by rw [← smul_assoc] congr 1 simp nth_rw 1 [mul_comm] rw [← mul_assoc] simp apply inv_mul_cancel apply circleMap_ne_center exact Ne.symm (ne_of_lt hR) have t'₁ {θ : ℝ} : circleMap 0 R θ = circleMap z R θ - z := by exact Eq.symm (circleMap_sub_center z R θ) simp_rw [← t'₁, t₁] at this simp at this have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ℝ) in (0)..2 * Real.pi, F (circleMap z R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F z)) := by rw [this] simp at t₂ have xx {x : ℝ} : (F (circleMap z R x)).re = f (circleMap z R x) := by rw [← h₂F] simp simp rw [Complex.dist_eq] rw [circleMap_sub_center] simp rwa [abs_of_nonneg (le_of_lt hR)] have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl rw [x₁] at t₂ rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂ simp at t₂ simp_rw [xx] at t₂ have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl rw [x₁] at t₂ have : Complex.reCLM (F z) = f z := by apply h₂F simp exact gt_trans hρ hR rw [this] at t₂ exact t₂ -- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi) apply ContinuousOn.intervalIntegrable apply ContinuousOn.comp reg₀F.continuousOn _ intro θ _ simp rw [Complex.dist_eq, circleMap_sub_center] simp rwa [abs_of_nonneg (le_of_lt hR)] apply Continuous.continuousOn exact continuous_circleMap z R /- Probably not optimal yet. We want a statements that requires harmonicity in the interior and continuity on the closed ball. -/ theorem harmonic_meanValue₁ {f : ℂ → ℝ} {z : ℂ} (R : ℝ) (hR : 0 < R) (hf : ∀ x ∈ Metric.closedBall z R , HarmonicAt f x) : (∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z := by obtain ⟨e, h₁e, h₂e⟩ := IsCompact.exists_thickening_subset_open (isCompact_closedBall z R) (HarmonicAt_isOpen f) hf rw [thickening_closedBall] at h₂e apply harmonic_meanValue (e + R) R assumption norm_num assumption exact fun x a => h₂e a assumption linarith