import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral theorem MeromorphicOn.order_ne_top {f : ℂ → ℂ} {U : Set ℂ} (h₁U : IsConnected U) (h₁f : MeromorphicOn f U) : (∃ z₀ : U, (h₁f z₀.1 z₀.2).order ≠ ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order ≠ ⊤) := by constructor · intro h obtain ⟨h₁z₀, h₂z₀⟩ := h intro hz sorry · intro h obtain ⟨w, hw⟩ := h₁U.nonempty use ⟨w, hw⟩ exact h ⟨w, hw⟩