import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Mathlib.Data.Complex.Module import Mathlib.Data.Complex.Order import Mathlib.Data.Complex.Exponential import Mathlib.Analysis.RCLike.Basic import Mathlib.Topology.Algebra.InfiniteSum.Module import Mathlib.Topology.Instances.RealVectorSpace import Nevanlinna.cauchyRiemann import Nevanlinna.laplace import Nevanlinna.partialDeriv variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] def Harmonic (f : ℂ → F) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) : Harmonic f := by -- f is real C² have f_is_real_C2 : ContDiff ℝ 2 f := ContDiff.restrict_scalars ℝ (Differentiable.contDiff h) have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞) constructor · -- f is two times real continuously differentiable exact f_is_real_C2 · -- Laplace of f is zero unfold Complex.laplace rw [CauchyRiemann₄ h] -- This lemma says that partial derivatives commute with complex scalar -- multiplication. This is a consequence of partialDeriv_compContLin once we -- note that complex scalar multiplication is continuous ℝ-linear. have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → ℂ, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by intro v s g hg -- Present scalar multiplication as a continuous ℝ-linear map. This is -- horrible, there must be better ways to do that. let sMuls : ℂ →L[ℝ] ℂ := { toFun := fun x ↦ s * x map_add' := by intro x y ring map_smul' := by intro m x simp ring } -- Bring the goal into a form that is recognized by -- partialDeriv_compContLin. have : s • g = sMuls ∘ g := by rfl rw [this] rw [partialDeriv_compContLin ℝ hg] rfl rw [this] rw [partialDeriv_comm f_is_real_C2 Complex.I 1] rw [CauchyRiemann₄ h] rw [this] rw [← smul_assoc] simp -- Subgoals coming from the application of 'this' -- Differentiable ℝ (Real.partialDeriv 1 f) exact fI_is_real_differentiable -- Differentiable ℝ (Real.partialDeriv 1 f) exact fI_is_real_differentiable theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) : Harmonic (Complex.reCLM ∘ f) := by sorry