import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.MeasureTheory.Integral.DivergenceTheorem import Mathlib.MeasureTheory.Function.LocallyIntegrable import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv /- variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F] variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G] noncomputable def Complex.primitive (f : ℂ → F) : ℂ → F := fun z ↦ ∫ t : ℝ in (0)..1, z • f (t * z) -/ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f : ℝ × ℝ → E) (g : ℝ × ℝ → E) (f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) (s : Set (ℝ × ℝ)) (hs : s.Countable) (Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x) (Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x) (Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by exact integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg Hdf Hdg Hi theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f : ℝ × ℝ → E) (g : ℝ × ℝ → E) (f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) (Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x) (Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x) (Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅ exact Set.countable_empty assumption assumption rwa [Set.diff_empty] rwa [Set.diff_empty] assumption theorem MeasureTheory.integral2_divergence₃ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f g : ℝ × ℝ → E) (h₁f : ContDiff ℝ 1 f) (h₁g : ContDiff ℝ 1 g) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅ exact Set.countable_empty -- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) exact h₁f.continuous.continuousOn -- exact h₁g.continuous.continuousOn -- rw [Set.diff_empty] intro x _ exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x) -- rw [Set.diff_empty] intro y _ exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y) -- apply ContinuousOn.integrableOn_compact apply IsCompact.prod exact isCompact_uIcc exact isCompact_uIcc apply ContinuousOn.add apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const theorem integral_divergence₄ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f g : ℂ → E) (h₁f : ContDiff ℝ 1 f) (h₁g : ContDiff ℝ 1 g) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl repeat (conv in f { re := _, im := _ } => rw [sfr]) repeat (conv in g { re := _, im := _ } => rw [sgr]) have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by rw [fderiv.comp] rw [Complex.equivRealProdCLM.symm.fderiv] tauto apply Differentiable.differentiableAt exact h₁f.differentiable le_rfl exact Complex.equivRealProdCLM.symm.differentiableAt conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr'] have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by rw [fderiv.comp] rw [Complex.equivRealProdCLM.symm.fderiv] tauto apply Differentiable.differentiableAt exact h₁g.differentiable le_rfl exact Complex.equivRealProdCLM.symm.differentiableAt conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr'] apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂ -- ContDiff ℝ 1 fr exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f -- ContDiff ℝ 1 gr exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g theorem integral_divergence₅ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] (F : ℂ → ℂ) (hF : Differentiable ℂ F) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) : (∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := b₂ }) + (∫ (y : ℝ) in a₂..b₂, F { re := b₁, im := y }) = (∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := a₂ }) + (∫ (y : ℝ) in a₂..b₂, F { re := a₁, im := y }) := by let h₁f : ContDiff ℝ 1 F := (hF.contDiff : ContDiff ℂ 1 F).restrict_scalars ℝ let g := Complex.I • F let h₁g : ContDiff ℝ 1 (Complex.I • F) := by have : Complex.I • F = fun x ↦ Complex.I • F x := by rfl rw [this] apply ContDiff.comp exact contDiff_const_smul Complex.I exact h₁f let A := integral_divergence₄ F g h₁f h₁g a₁ a₂ b₁ b₂ have {z : ℂ} : fderiv ℝ F z 1 = partialDeriv ℝ 1 F z := by rfl conv at A in (fderiv ℝ F _) 1 => rw [this] have {z : ℂ} : fderiv ℝ g z Complex.I = partialDeriv ℝ Complex.I g z := by rfl conv at A in (fderiv ℝ g _) Complex.I => rw [this] have : Differentiable ℂ g := by sorry conv at A => left arg 1 intro x arg 1 intro y rw [CauchyRiemann₄ this] rw [partialDeriv_smul'₂] rw [← smul_assoc] simp simp at A sorry