import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.Analysis.Convex.SpecificFunctions.Deriv open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((π / 2)⁻¹ * x)‖ := by intro x hx by_cases h'x : x = 0 · rw [h'x]; simp -- Now handle the case where x ≠ 0 have l₀ : log ((π / 2)⁻¹ * x) ≤ 0 := by apply log_nonpos apply mul_nonneg apply le_of_lt apply inv_pos.2 apply div_pos exact pi_pos exact zero_lt_two apply (Set.mem_Icc.1 hx).1 simp apply mul_le_one₀ rw [div_le_one pi_pos] exact two_le_pi exact (Set.mem_Icc.1 hx).1 exact (Set.mem_Icc.1 hx).2 have l₁ : 0 ≤ sin x := by apply sin_nonneg_of_nonneg_of_le_pi (Set.mem_Icc.1 hx).1 trans (1 : ℝ) exact (Set.mem_Icc.1 hx).2 trans π / 2 exact one_le_pi_div_two norm_num [pi_nonneg] have l₂ : log (sin x) ≤ 0 := log_nonpos l₁ (sin_le_one x) simp only [norm_eq_abs, Function.comp_apply] rw [abs_eq_neg_self.2 l₀] rw [abs_eq_neg_self.2 l₂] simp only [neg_le_neg_iff, ge_iff_le] have l₃ : x ∈ (Set.Ioi 0) := by simp exact lt_of_le_of_ne (Set.mem_Icc.1 hx).1 ( fun a => h'x (id (Eq.symm a)) ) have l₅ : 0 < (π / 2)⁻¹ * x := by apply mul_pos apply inv_pos.2 apply div_pos pi_pos zero_lt_two exact l₃ have : ∀ x ∈ (Set.Icc 0 (π / 2)), (π / 2)⁻¹ * x ≤ sin x := by intro x hx have i₀ : 0 ∈ Set.Icc 0 π := Set.left_mem_Icc.mpr pi_nonneg have i₁ : π / 2 ∈ Set.Icc 0 π := Set.mem_Icc.mpr ⟨div_nonneg pi_nonneg zero_le_two, half_le_self pi_nonneg⟩ have i₂ : 0 ≤ 1 - (π / 2)⁻¹ * x := by rw [sub_nonneg] calc (π / 2)⁻¹ * x _ ≤ (π / 2)⁻¹ * (π / 2) := by apply mul_le_mul_of_nonneg_left exact (Set.mem_Icc.1 hx).2 apply inv_nonneg.mpr (div_nonneg pi_nonneg zero_le_two) _ = 1 := by apply inv_mul_cancel₀ apply div_ne_zero_iff.mpr constructor · exact pi_ne_zero · exact Ne.symm (NeZero.ne' 2) have i₃ : 0 ≤ (π / 2)⁻¹ * x := by apply mul_nonneg apply inv_nonneg.2 apply div_nonneg exact pi_nonneg exact zero_le_two exact (Set.mem_Icc.1 hx).1 have i₄ : 1 - (π / 2)⁻¹ * x + (π / 2)⁻¹ * x = 1 := by ring let B := strictConcaveOn_sin_Icc.concaveOn.2 i₀ i₁ i₂ i₃ i₄ simp [Real.sin_pi_div_two] at B rw [(by ring_nf; rw [mul_inv_cancel₀ pi_ne_zero, one_mul] : 2 / π * x * (π / 2) = x)] at B simpa apply log_le_log l₅ apply this apply Set.mem_Icc.mpr constructor · exact le_of_lt l₃ · trans 1 exact (Set.mem_Icc.1 hx).2 exact one_le_pi_div_two lemma intervalIntegrable_log_sin₁ : IntervalIntegrable (log ∘ sin) volume 0 1 := by have int_log : IntervalIntegrable (fun x ↦ ‖log x‖) volume 0 1 := by apply IntervalIntegrable.norm -- Extract lemma here: log is integrable on [0, 1], and in fact on any -- interval [a, b] rw [← neg_neg log] apply IntervalIntegrable.neg apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x)) · exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg · intro x hx norm_num at hx convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1 norm_num · intro x hx norm_num at hx rw [Pi.neg_apply, Left.nonneg_neg_iff] exact (log_nonpos_iff hx.left).mpr hx.right.le have int_log : IntervalIntegrable (fun x ↦ ‖log ((π / 2)⁻¹ * x)‖) volume 0 1 := by have A := IntervalIntegrable.comp_mul_right int_log (π / 2)⁻¹ simp only [norm_eq_abs] at A conv => arg 1 intro x rw [mul_comm] simp only [norm_eq_abs] apply IntervalIntegrable.mono A simp trans Set.Icc 0 (π / 2) exact Set.Icc_subset_Icc (Preorder.le_refl 0) one_le_pi_div_two exact Set.Icc_subset_uIcc exact Preorder.le_refl volume apply IntervalIntegrable.mono_fun' (g := fun x ↦ ‖log ((π / 2)⁻¹ * x)‖) exact int_log -- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1)) apply ContinuousOn.aestronglyMeasurable apply ContinuousOn.comp (t := Ι 0 1) apply ContinuousOn.mono (s := {0}ᶜ) exact continuousOn_log intro x hx by_contra contra simp at contra rw [contra, Set.left_mem_uIoc] at hx linarith exact continuousOn_sin -- Set.MapsTo sin (Ι 0 1) (Ι 0 1) rw [Set.uIoc_of_le (zero_le_one' ℝ)] exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩ -- MeasurableSet (Ι 0 1) exact measurableSet_uIoc -- (fun x => ‖(log ∘ sin) x‖) ≤ᶠ[ae (volume.restrict (Ι 0 1))] ‖log‖ dsimp [EventuallyLE] rw [MeasureTheory.ae_restrict_iff] apply MeasureTheory.ae_of_all intro x hx have : x ∈ Set.Icc 0 1 := by simp simp at hx constructor · exact le_of_lt hx.1 · exact hx.2 let A := logsinBound x this simp only [Function.comp_apply, norm_eq_abs] at A exact A apply measurableSet_le apply Measurable.comp' exact continuous_abs.measurable exact Measurable.comp' measurable_log continuous_sin.measurable -- Measurable fun a => |log ((π / 2)⁻¹ * a)| apply Measurable.comp' exact continuous_abs.measurable apply Measurable.comp' exact measurable_log exact measurable_const_mul (π / 2)⁻¹ lemma intervalIntegrable_log_sin₂ : IntervalIntegrable (log ∘ sin) volume 0 (π / 2) := by apply IntervalIntegrable.trans (b := 1) exact intervalIntegrable_log_sin₁ -- IntervalIntegrable (log ∘ sin) volume 1 (π / 2) apply ContinuousOn.intervalIntegrable apply ContinuousOn.comp continuousOn_log continuousOn_sin intro x hx rw [Set.uIcc_of_le, Set.mem_Icc] at hx have : 0 < sin x := by apply Real.sin_pos_of_pos_of_lt_pi · calc 0 _ < 1 := Real.zero_lt_one _ ≤ x := hx.1 · calc x _ ≤ π / 2 := hx.2 _ < π := div_two_lt_of_pos pi_pos by_contra h₁x simp at h₁x rw [h₁x] at this simp at this exact one_le_pi_div_two theorem intervalIntegrable_log_sin : IntervalIntegrable (log ∘ sin) volume 0 π := by apply IntervalIntegrable.trans (b := π / 2) exact intervalIntegrable_log_sin₂ -- IntervalIntegrable (log ∘ sin) volume (π / 2) π let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ π simp at A let B := IntervalIntegrable.symm A have : π - π / 2 = π / 2 := by linarith rwa [this] at B theorem intervalIntegrable_log_cos : IntervalIntegrable (log ∘ cos) volume 0 (π / 2) := by let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ (π / 2) simp only [Function.comp_apply, sub_zero, sub_self] at A simp_rw [sin_pi_div_two_sub] at A have : (fun x => log (cos x)) = log ∘ cos := rfl apply IntervalIntegrable.symm rwa [← this] theorem intervalIntegral.integral_congr_volume {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ℝ E] {f : ℝ → E} {g : ℝ → E} {a : ℝ} {b : ℝ} (h₀ : a < b) (h₁ : Set.EqOn f g (Set.Ioo a b)) : ∫ (x : ℝ) in a..b, f x = ∫ (x : ℝ) in a..b, g x := by apply intervalIntegral.integral_congr_ae rw [MeasureTheory.ae_iff] apply nonpos_iff_eq_zero.1 push_neg have : {x | x ∈ Ι a b ∧ f x ≠ g x} ⊆ {b} := by intro x hx have t₂ : x ∈ Ι a b \ Set.Ioo a b := by constructor · exact hx.1 · by_contra H exact hx.2 (h₁ H) rw [Set.uIoc_of_le (le_of_lt h₀)] at t₂ rw [Set.Ioc_diff_Ioo_same h₀] at t₂ assumption calc volume {a_1 | a_1 ∈ Ι a b ∧ f a_1 ≠ g a_1} _ ≤ volume {b} := volume.mono this _ = 0 := volume_singleton theorem IntervalIntegrable.integral_congr_Ioo {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ℝ E] {f g : ℝ → E} {a b : ℝ} (hab : a ≤ b) (hfg : Set.EqOn f g (Set.Ioo a b)) : IntervalIntegrable f volume a b ↔ IntervalIntegrable g volume a b := by rw [intervalIntegrable_iff_integrableOn_Ioo_of_le hab] rw [MeasureTheory.integrableOn_congr_fun hfg measurableSet_Ioo] rw [← intervalIntegrable_iff_integrableOn_Ioo_of_le hab] lemma integral_log_sin₀ : ∫ (x : ℝ) in (0)..π, log (sin x) = 2 * ∫ (x : ℝ) in (0)..(π / 2), log (sin x) := by rw [← intervalIntegral.integral_add_adjacent_intervals (a := 0) (b := π / 2) (c := π)] conv => left right arg 1 intro x rw [← sin_pi_sub] rw [intervalIntegral.integral_comp_sub_left (fun x ↦ log (sin x)) π] have : π - π / 2 = π / 2 := by linarith rw [this] simp ring -- IntervalIntegrable (fun x => log (sin x)) volume 0 (π / 2) exact intervalIntegrable_log_sin₂ -- IntervalIntegrable (fun x => log (sin x)) volume (π / 2) π apply intervalIntegrable_log_sin.mono_set rw [Set.uIcc_of_le, Set.uIcc_of_le] apply Set.Icc_subset_Icc_left linarith [pi_pos] linarith [pi_pos] linarith [pi_pos] lemma integral_log_sin₁ : ∫ (x : ℝ) in (0)..(π / 2), log (sin x) = -log 2 * π/2 := by have t₁ {x : ℝ} : x ∈ Set.Ioo 0 (π / 2) → log (sin (2 * x)) = log 2 + log (sin x) + log (cos x) := by intro hx simp at hx rw [sin_two_mul x, log_mul, log_mul] exact Ne.symm (NeZero.ne' 2) -- sin x ≠ 0 apply (fun a => Ne.symm (ne_of_lt a)) apply sin_pos_of_mem_Ioo constructor · exact hx.1 · linarith [pi_pos, hx.2] -- 2 * sin x ≠ 0 simp apply (fun a => Ne.symm (ne_of_lt a)) apply sin_pos_of_mem_Ioo constructor · exact hx.1 · linarith [pi_pos, hx.2] -- cos x ≠ 0 apply (fun a => Ne.symm (ne_of_lt a)) apply cos_pos_of_mem_Ioo constructor · linarith [pi_pos, hx.1] · exact hx.2 have t₂ : Set.EqOn (fun y ↦ log (sin y)) (fun y ↦ log (sin (2 * y)) - log 2 - log (cos y)) (Set.Ioo 0 (π / 2)) := by intro x hx simp rw [t₁ hx] ring rw [intervalIntegral.integral_congr_volume _ t₂] rw [intervalIntegral.integral_sub, intervalIntegral.integral_sub] rw [intervalIntegral.integral_const] rw [intervalIntegral.integral_comp_mul_left (c := 2) (f := fun x ↦ log (sin x))] simp have : 2 * (π / 2) = π := by linarith rw [this] rw [integral_log_sin₀] have : ∫ (x : ℝ) in (0)..(π / 2), log (sin x) = ∫ (x : ℝ) in (0)..(π / 2), log (cos x) := by conv => right arg 1 intro x rw [← sin_pi_div_two_sub] rw [intervalIntegral.integral_comp_sub_left (fun x ↦ log (sin x)) (π / 2)] simp rw [← this] simp linarith exact Ne.symm (NeZero.ne' 2) -- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2) let A := intervalIntegrable_log_sin.comp_mul_left 2 simp at A assumption -- IntervalIntegrable (fun x => log 2) volume 0 (π / 2) simp -- IntervalIntegrable (fun x => log (sin (2 * x)) - log 2) volume 0 (π / 2) apply IntervalIntegrable.sub -- -- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2) let A := intervalIntegrable_log_sin.comp_mul_left 2 simp at A assumption -- -- IntervalIntegrable (fun x => log 2) volume 0 (π / 2) simp -- -- IntervalIntegrable (fun x => log (cos x)) volume 0 (π / 2) exact intervalIntegrable_log_cos -- linarith [pi_pos] lemma integral_log_sin₂ : ∫ (x : ℝ) in (0)..π, log (sin x) = -log 2 * π := by rw [integral_log_sin₀, integral_log_sin₁] ring