import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral theorem MeromorphicOn.decompose₁ {f : ℂ → ℂ} {U : Set ℂ} {z₀ : ℂ} (h₁f : MeromorphicOn f U) (h₂f : StronglyMeromorphicAt f z₀) (h₃f : h₂f.meromorphicAt.order ≠ ⊤) (hz₀ : z₀ ∈ U) : ∃ g : ℂ → ℂ, (MeromorphicOn g U) ∧ (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀) have h₁h₁ : MeromorphicOn h₁ U := by apply MeromorphicOn.zpow apply AnalyticOnNhd.meromorphicOn apply AnalyticOnNhd.sub exact analyticOnNhd_id exact analyticOnNhd_const let n : ℤ := (-h₁f.divisor z₀) have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff] use 1 constructor · apply analyticAt_const · constructor · simp · apply eventually_nhdsWithin_of_forall intro z hz simp let g₁ := f * h₁ have h₁g₁ : MeromorphicOn g₁ U := by apply h₁f.mul h₁h₁ have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)] rw [h₂h₁] unfold n rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f] conv => left left rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)] have (a b c : ℤ) (h : a + b = c) : (a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by rw [← h] simp rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0] simp ring let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt have h₂g : StronglyMeromorphicAt g z₀ := by exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀) have h₁g : MeromorphicOn g U := by intro z hz by_cases h₁z : z = z₀ · rw [h₁z] apply h₂g.meromorphicAt · apply (h₁g₁ z hz).congr rw [eventuallyEq_nhdsWithin_iff] rw [eventually_nhds_iff] use {z₀}ᶜ constructor · intro y h₁y h₂y let A := m₁ (h₁g₁ z₀ hz₀) y h₁y unfold g rw [← A] · constructor · exact isOpen_compl_singleton · exact h₁z have h₃g : (h₁g z₀ hz₀).order = 0 := by unfold g let B := m₂ (h₁g₁ z₀ hz₀) let A := (h₁g₁ z₀ hz₀).order_congr B rw [← A] rw [h₂g₁] have h₄g : AnalyticAt ℂ g z₀ := by apply h₂g.analytic rw [h₃g] use g constructor · exact h₁g · constructor · exact h₄g · constructor · exact (h₂g.order_eq_zero_iff).mp h₃g · funext z by_cases hz : z = z₀ · rw [hz] simp by_cases h : h₁f.divisor z₀ = 0 · simp [h] have h₂h₁ : h₁ = 1 := by funext w unfold h₁ simp [h] have h₃g₁ : g₁ = f := by unfold g₁ rw [h₂h₁] simp have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by rwa [h₃g₁] let A := h₄g₁.makeStronglyMeromorphic_id unfold g rw [← A, h₃g₁] · have : (0 : ℂ) ^ h₁f.divisor z₀ = (0 : ℂ) := by exact zero_zpow (h₁f.divisor z₀) h rw [this] simp let A := h₂f.order_eq_zero_iff.not simp at A rw [← A] unfold MeromorphicOn.divisor at h simp [hz₀] at h exact h.1 · simp let B := m₁ (h₁g₁ z₀ hz₀) z hz unfold g rw [← B] unfold g₁ h₁ simp [hz] rw [mul_assoc] rw [inv_mul_cancel₀] simp apply zpow_ne_zero rwa [sub_ne_zero] theorem MeromorphicOn.decompose₂ {f : ℂ → ℂ} {U : Set ℂ} {P : Finset U} (hf : StronglyMeromorphicOn f U) : (∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) → ∃ g : ℂ → ℂ, (MeromorphicOn g U) ∧ (∀ p : P, AnalyticAt ℂ g p) ∧ (∀ p : P, g p ≠ 0) ∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by apply Finset.induction (p := fun (P : Finset U) ↦ (∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) → ∃ g : ℂ → ℂ, (MeromorphicOn g U) ∧ (∀ p : P, AnalyticAt ℂ g p) ∧ (∀ p : P, g p ≠ 0) ∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1))) -- case empty simp exact hf.meromorphicOn -- case insert intro u P hu iHyp intro hOrder obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp)) have h₅g₀ : StronglyMeromorphicAt g₀ u := by rw [stronglyMeromorphicAt_of_mul_analytic (g := ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) (z₀ := u) (f := g₀)] rw [← h₄g₀] exact hf u u.2 -- have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by funext w simp rw [this] apply Finset.analyticAt_prod intro p hp apply AnalyticAt.zpow apply AnalyticAt.sub apply analyticAt_id apply analyticAt_const -- by_contra hCon rw [sub_eq_zero] at hCon have : p.1 = u := by exact SetCoe.ext (_root_.id (Eq.symm hCon)) rw [← this] at hu simp [hp] at hu -- simp only [Finset.prod_apply] rw [Finset.prod_ne_zero_iff] intro p hp apply zpow_ne_zero by_contra hCon rw [sub_eq_zero] at hCon have : p.1 = u := by exact SetCoe.ext (_root_.id (Eq.symm hCon)) rw [← this] at hu simp [hp] at hu have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by sorry obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2 use g · constructor · exact h₁g · constructor · sorry · constructor · sorry · sorry