import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric noncomputable def Real.partialDeriv : ℂ → (ℂ → ℂ) → (ℂ → ℂ) := by intro v intro f exact fun w ↦ (fderiv ℝ f w) v theorem partialDeriv_smul {f : ℂ → ℂ } {a v : ℂ} (h : Differentiable ℝ f) : Real.partialDeriv v (a • f) = a • Real.partialDeriv v f := by unfold Real.partialDeriv have : a • f = fun y ↦ a • f y := by rfl rw [this] conv => left intro w rw [fderiv_const_smul (h w)] theorem partialDeriv_contDiff {n : ℕ} {f : ℂ → ℂ} (h : ContDiff ℝ (n + 1) f) : ∀ v : ℂ, ContDiff ℝ n (Real.partialDeriv v f) := by unfold Real.partialDeriv intro v let A := (contDiff_succ_iff_fderiv.1 h).right simp at A have : (fun w => (fderiv ℝ f w) v) = (fun f => f v) ∘ (fun w => (fderiv ℝ f w)) := by rfl rw [this] refine ContDiff.comp ?hg A refine ContDiff.of_succ ?hg.h refine ContDiff.clm_apply ?hg.h.hf ?hg.h.hg exact contDiff_id exact contDiff_const lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) : fderiv ℝ (fderiv ℝ f) z b a = fderiv ℝ (fun w ↦ fderiv ℝ f w a) z b := by rw [fderiv_clm_apply] · simp · exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z · simp lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) : ∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by intro z a b let f' := fderiv ℝ f have h₀ : ∀ y, HasFDerivAt f (f' y) y := by have h : Differentiable ℝ f := by exact (contDiff_succ_iff_fderiv.1 hf).left exact fun y => DifferentiableAt.hasFDerivAt (h y) let f'' := (fderiv ℝ f' z) have h₁ : HasFDerivAt f' f'' z := by apply DifferentiableAt.hasFDerivAt let A := (contDiff_succ_iff_fderiv.1 hf).right let B := (contDiff_succ_iff_fderiv.1 A).left simp at B exact B z let A := second_derivative_symmetric h₀ h₁ a b dsimp [f'', f'] at A apply A theorem partialDeriv_comm {f : ℂ → ℂ} (h : ContDiff ℝ 2 f) : ∀ v₁ v₂ : ℂ, Real.partialDeriv v₁ (Real.partialDeriv v₂ f) = Real.partialDeriv v₂ (Real.partialDeriv v₁ f) := by intro v₁ v₂ unfold Real.partialDeriv funext z conv => left rw [← l₂ h z v₂ v₁] rw [derivSymm f h z v₁ v₂] conv => left rw [l₂ h z v₁ v₂]