import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv theorem CauchyRiemann₄ {f : ℂ → ℂ} : (Differentiable ℂ f) → Real.partialDeriv Complex.I f = Complex.I • Real.partialDeriv 1 f := by intro h unfold Real.partialDeriv conv => left intro w rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)] simp rw [← mul_one Complex.I] rw [← smul_eq_mul] rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1] conv => right right intro w rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)] noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by intro f let fx := Real.partialDeriv 1 f let fxx := Real.partialDeriv 1 fx let fy := Real.partialDeriv Complex.I f let fyy := Real.partialDeriv Complex.I fy exact fxx + fyy def Harmonic (f : ℂ → ℂ) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) : ∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by intro z a b let f' := fderiv ℝ f have h₀ : ∀ y, HasFDerivAt f (f' y) y := by have h : Differentiable ℝ f := by exact (contDiff_succ_iff_fderiv.1 hf).left exact fun y => DifferentiableAt.hasFDerivAt (h y) let f'' := (fderiv ℝ f' z) have h₁ : HasFDerivAt f' f'' z := by apply DifferentiableAt.hasFDerivAt let A := (contDiff_succ_iff_fderiv.1 hf).right let B := (contDiff_succ_iff_fderiv.1 A).left simp at B exact B z let A := second_derivative_symmetric h₀ h₁ a b dsimp [f'', f'] at A apply A lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) : fderiv ℝ (fderiv ℝ f) z b a = fderiv ℝ (fun w ↦ fderiv ℝ f w a) z b := by rw [fderiv_clm_apply] · simp · exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z · simp theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) : Harmonic f := by -- f is real C² have f_is_real_C2 : ContDiff ℝ 2 f := ContDiff.restrict_scalars ℝ (Differentiable.contDiff h) have fI_is_real_differentiable : Differentiable ℝ (Real.partialDeriv 1 f) := by exact (partialDeriv_contDiff f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞) constructor · -- f is two times real continuously differentiable exact f_is_real_C2 · -- Laplace of f is zero unfold Complex.laplace rw [CauchyRiemann₄ h] rw [partialDeriv_smul fI_is_real_differentiable] rw [partialDeriv_comm f_is_real_C2 Complex.I 1] rw [CauchyRiemann₄ h] rw [partialDeriv_smul fI_is_real_differentiable] rw [← smul_assoc] simp