import Mathlib.Analysis.Analytic.IsolatedZeros import Nevanlinna.holomorphic noncomputable def zeroDivisor (f : ℂ → ℂ) : ℂ → ℕ := by intro z if hf : AnalyticAt ℂ f z then exact hf.order.toNat else exact 0 theorem analyticAtZeroDivisorSupport {f : ℂ → ℂ} {z : ℂ} (h : z ∈ Function.support (zeroDivisor f)) : AnalyticAt ℂ f z := by by_contra h₁f simp at h dsimp [zeroDivisor] at h simp [h₁f] at h theorem zeroDivisor_eq_ord_AtZeroDivisorSupport {f : ℂ → ℂ} {z : ℂ} (h : z ∈ Function.support (zeroDivisor f)) : zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by unfold zeroDivisor simp [analyticAtZeroDivisorSupport h] lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by constructor · intro H₁ rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists] by_contra H₂ rw [H₂] at H₁ simp at H₁ · intro H obtain ⟨m, hm⟩ := H rw [← hm] simp lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : ℕ, m = n := by rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists] contrapose; simp; tauto theorem zeroDivisor_in_zeroSet {f : ℂ → ℂ} {z : ℂ} (h : z ∈ Function.support (zeroDivisor f)) : f z = 0 := by sorry theorem discreteZeros {f : ℂ → ℂ} : DiscreteTopology (Function.support (zeroDivisor f)) := by simp_rw [← singletons_open_iff_discrete, Metric.isOpen_singleton_iff] intro z have A : zeroDivisor f ↑z ≠ 0 := by exact z.2 let B := zeroDivisor_eq_ord_AtZeroDivisorSupport z.2 rw [B] at A have C := natural_if_toNatNeZero A obtain ⟨m, hm⟩ := C have h₂m : m ≠ 0 := by rw [← hm] at A simp at A assumption rw [eq_comm] at hm let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport z.2) m rw [E] at hm obtain ⟨g, h₁g, h₂g, h₃g⟩ := hm rw [Metric.eventually_nhds_iff_ball] at h₃g have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g have : {0}ᶜ ∈ nhds (g z) := by exact compl_singleton_mem_nhds_iff.mpr h₂g let F := h₄g.preimage_mem_nhds this rw [Metric.mem_nhds_iff] at F obtain ⟨ε, h₁ε, h₂ε⟩ := F use ε constructor; exact h₁ε intro y hy let G := h₂ε hy simp at G exact G obtain ⟨ε₁, h₁ε₁⟩ := this obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g use min ε₁ ε₂ constructor · have : 0 < min ε₁ ε₂ := by rw [lt_min_iff] exact And.imp_right (fun _ => h₁ε₂) h₁ε₁ exact this intro y intro h₁y have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by simp calc dist y z _ < min ε₁ ε₂ := by assumption _ ≤ ε₂ := by exact min_le_right ε₁ ε₂ have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by simp calc dist y z _ < min ε₁ ε₂ := by assumption _ ≤ ε₁ := by exact min_le_left ε₁ ε₂ let F := h₂ε₂ y.1 h₂y rw [zeroDivisor_in_zeroSet y.2] at F simp at F simp [h₂m] at F have : g y.1 ≠ 0 := by exact h₁ε₁.2 y h₃y simp [this] at F ext rwa [sub_eq_zero] at F theorem zeroDivisor_finiteOnCompact {f : ℂ → ℂ} {s : Set ℂ} (hs : IsCompact s) : Set.Finite (s ∩ Function.support (zeroDivisor f)) := by sorry theorem eliminatingZeros {f : ℂ → ℂ} {z₀ : ℂ} {R : ℝ} (h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z) (h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) : ∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by sorry