import Mathlib.Analysis.Analytic.IsolatedZeros import Nevanlinna.holomorphic noncomputable def zeroDivisor (f : ℂ → ℂ) : ℂ → ℕ := by intro z if hf : AnalyticAt ℂ f z then exact hf.order.toNat else exact 0 theorem analyticAtZeroDivisorSupport {f : ℂ → ℂ} {z : ℂ} (h : z ∈ Function.support (zeroDivisor f)) : AnalyticAt ℂ f z := by by_contra h₁f simp at h dsimp [zeroDivisor] at h simp [h₁f] at h lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by constructor · intro H₁ rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists] by_contra H₂ rw [H₂] at H₁ simp at H₁ · intro H obtain ⟨m, hm⟩ := H rw [← hm] simp theorem discreteZeros {f : ℂ → ℂ} : DiscreteTopology (Function.support (zeroDivisor f)) := by apply singletons_open_iff_discrete.mp intro z let A := analyticAtZeroDivisorSupport z.2 let c : WithTop ℕ := A.order let B := AnalyticAt.order_eq_nat_iff A let n := zeroDivisor f z.1 have : ∃ a : ℕ, a = A.order := by rw [← ENat.some_eq_coe] rw [← WithTop.ne_top_iff_exists] by_contra H rw [AnalyticAt.order_eq_top_iff] at H dsimp [n, zeroDivisor] simp [A] sorry let C := (B n).1 this apply Metric.isOpen_singleton_iff.mpr /- Try this: refine Metric.isOpen_singleton_iff.mpr ?_ Remaining subgoals: ⊢ ∃ ε > 0, ∀ (y : ↑(Function.support (zeroDivisor f))), dist y z < ε → y = z Suggestions Try this: refine isClosed_compl_iff.mp ?_ Remaining subgoals: ⊢ IsClosed {z}ᶜ Suggestions Try this: refine disjoint_frontier_iff_isOpen.mp ?_ Remaining subgoals: ⊢ Disjoint (frontier {z}) {z} Suggestions Try this: refine isOpen_iff_forall_mem_open.mpr ?_ Remaining subgoals: ⊢ ∀ x ∈ {z}, ∃ t ⊆ {z}, IsOpen t ∧ x ∈ t -/ sorry theorem zeroDivisor_finiteOnCompact {f : ℂ → ℂ} {s : Set ℂ} (hs : IsCompact s) : Set.Finite (s ∩ Function.support (zeroDivisor f)) := by sorry theorem eliminatingZeros {f : ℂ → ℂ} {z₀ : ℂ} {R : ℝ} (h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z) (h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) : ∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by sorry