import Mathlib.Analysis.Complex.CauchyIntegral import Nevanlinna.harmonicAt_examples import Nevanlinna.harmonicAt_meanValue import Mathlib.Analysis.Analytic.IsolatedZeros lemma xx {f : ℂ → ℂ} {S : Set ℂ} {R : ℝ} (h₁ : DifferentiableOn ℂ f (Metric.ball z₀ R)) : ∃ o : ℂ → ℕ, ∃ F : ℂ → ℂ, ∀ z ∈ (Metric.ball z₀ R), (DifferentiableAt ℂ F z) ∧ (F z ≠ 0) ∧ (f z = F z * ∏ᶠ s ∈ (Metric.ball z₀ R), (z - s) ^ (o s)) := by sorry theorem jensen_case_R_eq_one' (f : ℂ → ℂ) (h₁f : Differentiable ℂ f) (h₂f : f 0 ≠ 0) (S : Finset ℕ) (a : S → ℂ) (ha : ∀ s, a s ∈ Metric.ball 0 1) (F : ℂ → ℂ) (h₁F : Differentiable ℂ F) (h₂F : ∀ z, F z ≠ 0) (h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) : Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by sorry