import Init.Classical import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Topology.ContinuousOn import Mathlib.Analysis.Analytic.IsolatedZeros import Nevanlinna.holomorphic theorem AnalyticOn.order_eq_nat_iff {f : ℂ → ℂ} {U : Set ℂ} {z₀ : ℂ} (hf : AnalyticOn ℂ f U) (hz₀ : z₀ ∈ U) (n : ℕ) : (hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by constructor -- Direction → intro hn obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn -- Define a candidate function; this is (f z) / (z - z₀) ^ n with the -- removable singularity removed let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n -- Describe g near z₀ have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by rw [eventually_nhds_iff] obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc use t constructor · intro y h₁y by_cases h₂y : y = z₀ · dsimp [g]; simp [h₂y] · dsimp [g]; simp [h₂y] rw [div_eq_iff_mul_eq, eq_comm, mul_comm] exact h₁t y h₁y norm_num rw [sub_eq_zero] tauto · constructor · assumption · assumption -- Describe g near points z₁ that are different from z₀ have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by intro hz₁ rw [eventually_nhds_iff] use {z₀}ᶜ constructor · intro y hy simp at hy simp [g, hy] · exact ⟨isOpen_compl_singleton, hz₁⟩ -- Use g and show that it has all required properties use g constructor · -- AnalyticOn ℂ g U intro z h₁z by_cases h₂z : z = z₀ · rw [h₂z] apply AnalyticAt.congr h₁gloc exact Filter.EventuallyEq.symm g_near_z₀ · simp_rw [eq_comm] at g_near_z₁ apply AnalyticAt.congr _ (g_near_z₁ h₂z) apply AnalyticAt.div exact hf z h₁z apply AnalyticAt.pow apply AnalyticAt.sub apply analyticAt_id apply analyticAt_const simp rw [sub_eq_zero] tauto · constructor · simp [g]; tauto · intro z by_cases h₂z : z = z₀ · rw [h₂z, g_near_z₀.self_of_nhds] exact h₃gloc.self_of_nhds · rw [(g_near_z₁ h₂z).self_of_nhds] simp [h₂z] rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel] simp; norm_num rw [sub_eq_zero] tauto -- direction ← intro h obtain ⟨g, h₁g, h₂g, h₃g⟩ := h rw [AnalyticAt.order_eq_nat_iff] use g exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩ theorem AnalyticOn.order_eq_nat_iff' {f : ℂ → ℂ} {U : Set ℂ} {A : Finset U} (hf : AnalyticOn ℂ f U) (n : A → ℕ) : ∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a, g a ≠ 0) ∧ ∀ z, f z = (∏ a, (z - a) ^ (n a)) • g z := by apply Finset.induction let a : A := by sorry let b : ℂ := by sorry let u : U := by sorry let X := n a have : a = (3 : ℂ) := by sorry have : b ∈ ↑A := by sorry have : ↑a ∈ U := by exact Subtype.coe_prop a.val let Y := ∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a --∀ a : A, (hf (ha a)).order = ↑(n a) → intro hn obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn -- Define a candidate function let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n -- Describe g near z₀ have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by rw [eventually_nhds_iff] obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc use t constructor · intro y h₁y by_cases h₂y : y = z₀ · dsimp [g]; simp [h₂y] · dsimp [g]; simp [h₂y] rw [div_eq_iff_mul_eq, eq_comm, mul_comm] exact h₁t y h₁y norm_num rw [sub_eq_zero] tauto · constructor · assumption · assumption -- Describe g near points z₁ different from z₀ have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by intro hz₁ rw [eventually_nhds_iff] use {z₀}ᶜ constructor · intro y hy simp at hy simp [g, hy] · exact ⟨isOpen_compl_singleton, hz₁⟩ -- Use g and show that it has all required properties use g constructor · -- AnalyticOn ℂ g U intro z h₁z by_cases h₂z : z = z₀ · rw [h₂z] apply AnalyticAt.congr h₁gloc exact Filter.EventuallyEq.symm g_near_z₀ · simp_rw [eq_comm] at g_near_z₁ apply AnalyticAt.congr _ (g_near_z₁ h₂z) apply AnalyticAt.div exact hf z h₁z apply AnalyticAt.pow apply AnalyticAt.sub apply analyticAt_id apply analyticAt_const simp rw [sub_eq_zero] tauto · constructor · simp [g]; tauto · intro z by_cases h₂z : z = z₀ · rw [h₂z, g_near_z₀.self_of_nhds] exact h₃gloc.self_of_nhds · rw [(g_near_z₁ h₂z).self_of_nhds] simp [h₂z] rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel] simp; norm_num rw [sub_eq_zero] tauto