import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn import Mathlib.MeasureTheory.Integral.CircleIntegral open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral lemma b (S U : Set ℂ) (hS : S ∈ Filter.codiscreteWithin U) : DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by rw [mem_codiscreteWithin] at hS simp at hS have : (U \ S)ᶜ = S ∪ Uᶜ := by ext z simp tauto rw [discreteTopology_subtype_iff] intro x hx rw [← mem_iff_inf_principal_compl] simp at hx let A := hS x hx.2 rw [← this] assumption lemma c (S U : Set ℂ) (hS : S ∈ Filter.codiscreteWithin U) : Countable ((S ∪ Uᶜ)ᶜ : Set ℂ) := by let A := b S U hS apply TopologicalSpace.separableSpace_iff_countable.1 exact TopologicalSpace.SecondCountableTopology.to_separableSpace theorem integrability_congr_changeDiscrete {f₁ f₂ : ℂ → ℂ} {U : Set ℂ} {r : ℝ} (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) : IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by intro hf₁ apply IntervalIntegrable.congr hf₁ rw [Filter.eventuallyEq_iff_exists_mem] use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U) constructor · apply Set.Countable.measure_zero have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by exact rfl rw [this] apply Set.Countable.preimage_circleMap apply c sorry sorry · intro x hx simp at hx simp exact hx.1