import Mathlib.Analysis.Analytic.IsolatedZeros import Nevanlinna.holomorphic noncomputable def zeroDivisor (f : ℂ → ℂ) : ℂ → ℕ := by intro z if hf : AnalyticAt ℂ f z then exact hf.order.toNat else exact 0 theorem discreteZeros {f : ℂ → ℂ} : DiscreteTopology (Function.support (zeroDivisor f)) := by sorry theorem zeroDivisor_finiteOnCompact {f : ℂ → ℂ} {s : Set ℂ} (hs : IsCompact s) : Set.Finite (s ∩ Function.support (zeroDivisor f)) := by sorry theorem eliminatingZeros {f : ℂ → ℂ} {z₀ : ℂ} {R : ℝ} (h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z) (h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) : ∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by sorry