import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral lemma WithTopCoe {n : WithTop ℕ} : WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by rcases n with h|h · intro h contradiction · intro h₁ simp only [WithTop.map, Option.map] at h₁ have : (h : ℤ) = 0 := by exact WithTop.coe_eq_zero.mp h₁ have : h = 0 := by exact Int.ofNat_eq_zero.mp this rw [this] rfl theorem MeromorphicOn.decompose {f : ℂ → ℂ} {U : Set ℂ} (h₁U : IsConnected U) (h₂U : IsCompact U) (h₁f : MeromorphicOn f U) (h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) : ∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U) ∧ (∀ z ∈ U, g z ≠ 0) ∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p)) have h₁g₁ : MeromorphicOn g₁ U := by sorry let g := h₁g₁.makeStronglyMeromorphicOn have h₁g : MeromorphicOn g U := by sorry have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by sorry have h₃g : StronglyMeromorphicOn g U := by sorry have h₄g : AnalyticOnNhd ℂ g U := by intro z hz apply StronglyMeromorphicAt.analytic (h₃g z hz) rw [h₂g ⟨z, hz⟩] use g constructor · exact h₄g · constructor · intro z hz rw [← (h₄g z hz).order_eq_zero_iff] have A := (h₄g z hz).meromorphicAt_order rw [h₂g ⟨z, hz⟩] at A have t₀ : (h₄g z hz).order ≠ ⊤ := by by_contra hC rw [hC] at A tauto have t₁ : ∃ n : ℕ, (h₄g z hz).order = n := by exact Option.ne_none_iff_exists'.mp t₀ obtain ⟨n, hn⟩ := t₁ rw [hn] at A apply WithTopCoe rw [eq_comm] rw [hn] exact A · intro z hz have t₀ : ∀ᶠ x in 𝓝[≠] z, AnalyticAt ℂ f x := by sorry have t₂ : ∀ᶠ x in 𝓝[≠] z, h₁f.divisor z = 0 := by sorry have t₁ : ∀ᶠ x in 𝓝[≠] z, AnalyticAt ℂ (fun z => ∏ᶠ (p : ℂ), (z - p) ^ h₁f.divisor p * g z) x := by sorry sorry