import Nevanlinna.complexHarmonic import Nevanlinna.holomorphicAt import Nevanlinna.holomorphic_primitive2 import Nevanlinna.mathlibAddOn theorem CauchyRiemann₆ {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : E → F} {z : E} : (DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ ∀ e, partialDeriv ℝ (Complex.I • e) f z = Complex.I • partialDeriv ℝ e f z := by constructor · -- Direction "→" intro h constructor · exact DifferentiableAt.restrictScalars ℝ h · unfold partialDeriv conv => intro e left rw [DifferentiableAt.fderiv_restrictScalars ℝ h] simp rw [← mul_one Complex.I] rw [← smul_eq_mul] conv => intro e right right rw [DifferentiableAt.fderiv_restrictScalars ℝ h] simp · -- Direction "←" intro ⟨h₁, h₂⟩ apply (differentiableAt_iff_restrictScalars ℝ h₁).2 use { toFun := fderiv ℝ f z map_add' := fun x y => ContinuousLinearMap.map_add (fderiv ℝ f z) x y map_smul' := by simp intro m x have : m = m.re + m.im • Complex.I := by simp rw [this, add_smul, add_smul, ContinuousLinearMap.map_add] congr simp rw [smul_assoc, smul_assoc, ContinuousLinearMap.map_smul (fderiv ℝ f z) m.2] congr exact h₂ x } rfl theorem CauchyRiemann₇ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : ℂ → F} {z : ℂ} : (DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by constructor · intro hf constructor · exact (CauchyRiemann₆.1 hf).1 · let A := (CauchyRiemann₆.1 hf).2 1 simp at A exact A · intro ⟨h₁, h₂⟩ apply CauchyRiemann₆.2 constructor · exact h₁ · intro e have : Complex.I • e = e • Complex.I := by rw [smul_eq_mul, smul_eq_mul] exact CommMonoid.mul_comm Complex.I e rw [this] have : e = e.re + e.im • Complex.I := by simp rw [this, add_smul, partialDeriv_add₁, partialDeriv_add₁] simp rw [← smul_eq_mul] have : partialDeriv ℝ ((e.re : ℝ) • Complex.I) f = partialDeriv ℝ ((e.re : ℂ) • Complex.I) f := by rfl rw [← this, partialDeriv_smul₁ ℝ] have : (e.re : ℂ) = (e.re : ℝ) • (1 : ℂ) := by simp rw [this, partialDeriv_smul₁ ℝ] have : partialDeriv ℝ ((e.im : ℂ) * Complex.I) f = partialDeriv ℝ ((e.im : ℝ) • Complex.I) f := by rfl rw [this, partialDeriv_smul₁ ℝ] simp rw [h₂] rw [smul_comm] congr rw [mul_assoc] simp nth_rw 2 [smul_comm] rw [← smul_assoc] simp have : - (e.im : ℂ) = (-e.im : ℝ) • (1 : ℂ) := by simp rw [this, partialDeriv_smul₁ ℝ] simp /- A harmonic, real-valued function on ℂ is the real part of a suitable holomorphic function. -/ theorem harmonic_is_realOfHolomorphic {f : ℂ → ℝ} {z : ℂ} {R : ℝ} (hR : 0 < R) (hf : ∀ x ∈ Metric.ball z R, HarmonicAt f x) : ∃ F : ℂ → ℂ, (∀ x ∈ Metric.ball z R, HolomorphicAt F x) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f) let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f) let g : ℂ → ℂ := f_1 - Complex.I • f_I have contDiffOn_if_contDiffAt {f' : ℂ → ℝ} {z' : ℂ} {R' : ℝ} {n' : ℕ} (hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt ℝ n' f' x) : ContDiffOn ℝ n' f' (Metric.ball z' R') := by intro z hz apply ContDiffAt.contDiffWithinAt exact hf' z hz have reg₂f : ContDiffOn ℝ 2 f (Metric.ball z R) := by apply contDiffOn_if_contDiffAt intro x hx exact (hf x hx).1 have contDiffOn_if_contDiffAt' {f' : ℂ → ℂ} {z' : ℂ} {R' : ℝ} {n' : ℕ} (hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt ℝ n' f' x) : ContDiffOn ℝ n' f' (Metric.ball z' R') := by intro z hz apply ContDiffAt.contDiffWithinAt exact hf' z hz have reg₁f_1 : ContDiffOn ℝ 1 f_1 (Metric.ball z R) := by apply contDiffOn_if_contDiffAt' intro z hz dsimp [f_1] apply ContDiffAt.continuousLinearMap_comp exact partialDeriv_contDiffAt ℝ (hf z hz).1 1 have reg₁f_I : ContDiffOn ℝ 1 f_I (Metric.ball z R) := by apply contDiffOn_if_contDiffAt' intro z hz dsimp [f_I] apply ContDiffAt.continuousLinearMap_comp exact partialDeriv_contDiffAt ℝ (hf z hz).1 Complex.I have reg₁g : ContDiffOn ℝ 1 g (Metric.ball z R) := by dsimp [g] apply ContDiffOn.sub exact reg₁f_1 have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl rw [this] apply ContDiffOn.const_smul exact reg₁f_I have reg₁ : DifferentiableOn ℂ g (Metric.ball z R) := by intro x hx apply DifferentiableAt.differentiableWithinAt apply CauchyRiemann₇.2 constructor · apply DifferentiableWithinAt.differentiableAt (reg₁g.differentiableOn le_rfl x hx) apply IsOpen.mem_nhds Metric.isOpen_ball hx · dsimp [g] rw [partialDeriv_sub₂_differentiableAt, partialDeriv_sub₂_differentiableAt] dsimp [f_1, f_I] rw [partialDeriv_smul'₂, partialDeriv_smul'₂] rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt] simp rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt] rw [mul_sub] simp rw [← mul_assoc] simp rw [add_comm, sub_eq_add_neg] congr 1 · rw [partialDeriv_commOn _ reg₂f Complex.I 1] exact hx exact Metric.isOpen_ball · let A := Filter.EventuallyEq.eq_of_nhds (hf x hx).2 simp at A unfold Complex.laplace at A conv => right right rw [← sub_zero (partialDeriv ℝ 1 (partialDeriv ℝ 1 f) x)] rw [← A] simp --DifferentiableAt ℝ (partialDeriv ℝ _ f) repeat apply ContDiffAt.differentiableAt apply partialDeriv_contDiffAt ℝ (hf x hx).1 apply le_rfl -- DifferentiableAt ℝ f_1 x apply (reg₁f_1.differentiableOn le_rfl).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx -- DifferentiableAt ℝ (Complex.I • f_I) have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl rw [this] apply DifferentiableAt.const_smul apply (reg₁f_I.differentiableOn le_rfl).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx -- Differentiable ℝ f_1 apply (reg₁f_1.differentiableOn le_rfl).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx -- Differentiable ℝ (Complex.I • f_I) have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl rw [this] apply DifferentiableAt.const_smul apply (reg₁f_I.differentiableOn le_rfl).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx let F := fun z' ↦ (primitive z g) z' + f z have regF : DifferentiableOn ℂ F (Metric.ball z R) := by apply DifferentiableOn.add apply primitive_differentiableOn reg₁ simp have pF'' : ∀ x ∈ Metric.ball z R, (fderiv ℝ F x) = ContinuousLinearMap.lsmul ℝ ℂ (g x) := by intro x hx have : DifferentiableAt ℂ F x := by apply (regF x hx).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx rw [DifferentiableAt.fderiv_restrictScalars ℝ this] dsimp [F] rw [fderiv_add_const] rw [primitive_fderiv' reg₁ x hx] exact rfl use F constructor · -- ∀ x ∈ Metric.ball z R, HolomorphicAt F x intro x hx apply HolomorphicAt_iff.2 use Metric.ball z R constructor · exact Metric.isOpen_ball · constructor · assumption · intro w hw apply (regF w hw).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hw · -- Set.EqOn (⇑Complex.reCLM ∘ F) f (Metric.ball z R) have : DifferentiableOn ℝ (Complex.reCLM ∘ F) (Metric.ball z R) := by apply DifferentiableOn.comp apply Differentiable.differentiableOn apply ContinuousLinearMap.differentiable Complex.reCLM apply regF.restrictScalars ℝ exact Set.mapsTo'.mpr fun ⦃a⦄ _ => hR have hz : z ∈ Metric.ball z R := by exact Metric.mem_ball_self hR apply Convex.eqOn_of_fderivWithin_eq _ this _ _ _ hz _ exact convex_ball z R apply reg₂f.differentiableOn one_le_two apply IsOpen.uniqueDiffOn Metric.isOpen_ball intro x hx rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv] rw [fderiv.comp] simp apply ContinuousLinearMap.ext intro w simp rw [pF''] dsimp [g, f_1, f_I, partialDeriv] simp have : w = w.re • 1 + w.im • Complex.I := by simp nth_rw 3 [this] rw [(fderiv ℝ f x).map_add] rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul] rw [smul_eq_mul, smul_eq_mul] ring assumption exact ContinuousLinearMap.differentiableAt Complex.reCLM apply (regF.restrictScalars ℝ x hx).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx apply IsOpen.uniqueDiffOn Metric.isOpen_ball assumption apply (reg₂f.differentiableOn one_le_two).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx apply IsOpen.uniqueDiffOn Metric.isOpen_ball assumption -- DifferentiableAt ℝ (⇑Complex.reCLM ∘ F) x apply DifferentiableAt.comp apply Differentiable.differentiableAt exact ContinuousLinearMap.differentiable Complex.reCLM apply (regF.restrictScalars ℝ x hx).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hx -- dsimp [F] rw [primitive_zeroAtBasepoint] simp