import Mathlib.Algebra.BigOperators.Basic import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.InnerProductSpace.PiL2 open BigOperators open Finset variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ā„ E] [FiniteDimensional ā„ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ā„ F] open TensorProduct example : 0 = 1 := by let B := (sesqFormOfInner (š•œ := ā„) (E := E)).flip have e: E := by sorry let C := B e let Ī± := InnerProductSpace.toDual ā„ E let Ī² : E ā†’ā‚—[ā„] ā„ := by sorry let YY := E āŠ—[ā„] E let ZZ := TensorProduct.mapBilinear ā„ E E ā„ ā„ let A : E Ɨ E ā†’ LinearMap.BilinForm ā„ E := by unfold LinearMap.BilinForm intro (eā‚, eā‚‚) sorry sorry