import Mathlib.Analysis.Analytic.IsolatedZeros import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Analytic.Linear open Topology theorem AnalyticAt.order_neq_top_iff {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order ≠ ⊤ ↔ ∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (hf.order.toNat) • g z := by rw [← hf.order_eq_nat_iff] constructor · intro h₁f exact Eq.symm (ENat.coe_toNat h₁f) · intro h₁f exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f)) theorem AnalyticAt.order_mul {f₁ f₂ : ℂ → ℂ} {z₀ : ℂ} (hf₁ : AnalyticAt ℂ f₁ z₀) (hf₂ : AnalyticAt ℂ f₂ z₀) : (hf₁.mul hf₂).order = hf₁.order + hf₂.order := by by_cases h₂f₁ : hf₁.order = ⊤ · simp [h₂f₁] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · by_cases h₂f₂ : hf₂.order = ⊤ · simp [h₂f₂] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁)) obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂)) rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add] rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)] use g₁ * g₂ constructor · exact AnalyticAt.mul h₁g₁ h₁g₂ · constructor · simp; tauto · obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁ obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂ rw [eventually_nhds_iff] use t₁ ∩ t₂ constructor · intro y hy rw [h₁t₁ y hy.1, h₁t₂ y hy.2] simp; ring · constructor · exact IsOpen.inter h₂t₁ h₂t₂ · exact Set.mem_inter h₃t₁ h₃t₂ theorem AnalyticAt.order_eq_zero_iff {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order = 0 ↔ f z₀ ≠ 0 := by have : (0 : ENat) = (0 : Nat) := by rfl rw [this, AnalyticAt.order_eq_nat_iff hf 0] constructor · intro hz obtain ⟨g, _, h₂g, h₃g⟩ := hz simp at h₃g rw [Filter.Eventually.self_of_nhds h₃g] tauto · intro hz use f constructor · exact hf · constructor · exact hz · simp theorem AnalyticAt.order_pow {f : ℂ → ℂ} {z₀ : ℂ} {n : ℕ} (hf : AnalyticAt ℂ f z₀) : (hf.pow n).order = n * hf.order := by induction' n with n hn · simp; rw [AnalyticAt.order_eq_zero_iff]; simp · simp simp_rw [add_mul, pow_add] simp rw [AnalyticAt.order_mul (hf.pow n) hf] rw [hn] theorem AnalyticAt.supp_order_toNat {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order.toNat ≠ 0 → f z₀ = 0 := by contrapose intro h₁f simp [hf.order_eq_zero_iff.2 h₁f] theorem eventually_nhds_comp_composition {f₁ f₂ ℓ : ℂ → ℂ} {z₀ : ℂ} (hf : ∀ᶠ (z : ℂ) in nhds (ℓ z₀), f₁ z = f₂ z) (hℓ : Continuous ℓ) : ∀ᶠ (z : ℂ) in nhds z₀, (f₁ ∘ ℓ) z = (f₂ ∘ ℓ) z := by obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 hf apply eventually_nhds_iff.2 use ℓ⁻¹' t constructor · intro y hy exact h₁t (ℓ y) hy · constructor · apply IsOpen.preimage exact hℓ exact h₂t · exact h₃t theorem AnalyticAt.order_congr {f₁ f₂ : ℂ → ℂ} {z₀ : ℂ} (hf₁ : AnalyticAt ℂ f₁ z₀) (hf : f₁ =ᶠ[nhds z₀] f₂) : hf₁.order = (hf₁.congr hf).order := by by_cases h₁f₁ : hf₁.order = ⊤ rw [h₁f₁, eq_comm, AnalyticAt.order_eq_top_iff] rw [AnalyticAt.order_eq_top_iff] at h₁f₁ exact Filter.EventuallyEq.rw h₁f₁ (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf)) -- let n := hf₁.order.toNat have hn : hf₁.order = n := Eq.symm (ENat.coe_toNat h₁f₁) rw [hn, eq_comm, AnalyticAt.order_eq_nat_iff] rw [AnalyticAt.order_eq_nat_iff] at hn obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn use g constructor · assumption · constructor · assumption · exact Filter.EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf)) theorem AnalyticAt.order_comp_CLE (ℓ : ℂ ≃L[ℂ] ℂ) {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f (ℓ z₀)) : hf.order = (hf.comp (ℓ.analyticAt z₀)).order := by by_cases h₁f : hf.order = ⊤ · rw [h₁f] rw [AnalyticAt.order_eq_top_iff] at h₁f let A := eventually_nhds_comp_composition h₁f ℓ.continuous simp at A rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A] have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const have : this.order = ⊤ := by rw [AnalyticAt.order_eq_top_iff] simp rw [this] · let n := hf.order.toNat have hn : hf.order = n := Eq.symm (ENat.coe_toNat h₁f) rw [hn] rw [AnalyticAt.order_eq_nat_iff] at hn obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn have A := eventually_nhds_comp_composition h₃g ℓ.continuous have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by apply AnalyticAt.sub exact ContinuousLinearEquiv.analyticAt ℓ z₀ exact analyticAt_const have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by exact pow t₁ n have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by apply AnalyticAt.mul exact t₀ apply AnalyticAt.comp h₁g exact ContinuousLinearEquiv.analyticAt ℓ z₀ rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A] simp rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))] have : t₁.order = (1 : ℕ) := by rw [AnalyticAt.order_eq_nat_iff] use (fun _ ↦ ℓ 1) simp constructor · exact analyticAt_const · apply Filter.Eventually.of_forall intro x calc ℓ x - ℓ z₀ _ = ℓ (x - z₀) := by exact Eq.symm (ContinuousLinearEquiv.map_sub ℓ x z₀) _ = ℓ ((x - z₀) * 1) := by simp _ = (x - z₀) * ℓ 1 := by rw [← smul_eq_mul, ← smul_eq_mul] exact ContinuousLinearEquiv.map_smul ℓ (x - z₀) 1 have : t₀.order = n := by rw [AnalyticAt.order_pow t₁, this] simp rw [this] have : (comp h₁g (ContinuousLinearEquiv.analyticAt ℓ z₀)).order = 0 := by rwa [AnalyticAt.order_eq_zero_iff] rw [this] simp theorem AnalyticAt.localIdentity {f g : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) (hg : AnalyticAt ℂ g z₀) : f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by intro h let Δ := f - g have : AnalyticAt ℂ Δ z₀ := AnalyticAt.sub hf hg have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by exact Filter.eventuallyEq_iff_sub.mp h have : Δ =ᶠ[𝓝 z₀] 0 := by rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h · exact h · have := Filter.EventuallyEq.eventually t₁ let A := Filter.eventually_and.2 ⟨this, h⟩ let _ := Filter.Eventually.exists A tauto exact Filter.eventuallyEq_iff_sub.mpr this theorem AnalyticAt.mul₁ {f g : ℂ → ℂ} {z : ℂ} (hf : AnalyticAt ℂ f z) (hg : AnalyticAt ℂ g z) : AnalyticAt ℂ (f * g) z := by rw [(by rfl : f * g = (fun x ↦ f x * g x))] exact mul hf hg theorem analyticAt_finprod {α : Type} {f : α → ℂ → ℂ} {z : ℂ} (hf : ∀ a, AnalyticAt ℂ (f a) z) : AnalyticAt ℂ (∏ᶠ a, f a) z := by by_cases h₁f : (Function.mulSupport f).Finite · rw [finprod_eq_prod f h₁f] rw [Finset.prod_fn h₁f.toFinset f] exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a) · rw [finprod_of_infinite_mulSupport h₁f] exact analyticAt_const lemma AnalyticAt.zpow_nonneg {f : ℂ → ℂ} {z₀ : ℂ} {n : ℤ} (hf : AnalyticAt ℂ f z₀) (hn : 0 ≤ n) : AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by simp_rw [(Eq.symm (Int.toNat_of_nonneg hn) : n = OfNat.ofNat n.toNat), zpow_ofNat] apply AnalyticAt.pow hf theorem AnalyticAt.zpow {f : ℂ → ℂ} {z₀ : ℂ} {n : ℤ} (h₁f : AnalyticAt ℂ f z₀) (h₂f : f z₀ ≠ 0) : AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by by_cases hn : 0 ≤ n · exact zpow_nonneg h₁f hn · rw [(Int.eq_neg_comm.mp rfl : n = - (- n))] conv => arg 2 intro x rw [zpow_neg] exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f) /- A function is analytic at a point iff it is analytic after multiplication with a non-vanishing analytic function -/ theorem analyticAt_of_mul_analytic {f g : ℂ → ℂ} {z₀ : ℂ} (h₁g : AnalyticAt ℂ g z₀) (h₂g : g z₀ ≠ 0) : AnalyticAt ℂ f z₀ ↔ AnalyticAt ℂ (f * g) z₀ := by constructor · exact fun a => AnalyticAt.mul₁ a h₁g · intro hprod let g' := fun z ↦ (g z)⁻¹ have h₁g' := h₁g.inv h₂g have h₂g' : g' z₀ ≠ 0 := by exact inv_ne_zero h₂g have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by unfold Filter.EventuallyEq apply Filter.eventually_iff_exists_mem.mpr use g⁻¹' {0}ᶜ constructor · apply ContinuousAt.preimage_mem_nhds exact AnalyticAt.continuousAt h₁g exact compl_singleton_mem_nhds_iff.mpr h₂g · intro y hy simp at hy simp [hy] rw [analyticAt_congr this] apply hprod.mul exact h₁g'