import Mathlib.Analysis.Complex.Basic import Nevanlinna.partialDeriv variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G] noncomputable def Complex.laplace (f : ℂ → F) : ℂ → F := partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f) notation "Δ" => Complex.laplace theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ x = Δ f₂ x := by unfold Complex.laplace simp rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1] rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I] theorem laplace_eventuallyEq' {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ =ᶠ[nhds x] Δ f₂ := by unfold Complex.laplace apply Filter.EventuallyEq.add exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1 exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂) : Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by unfold Complex.laplace rw [partialDeriv_add₂] rw [partialDeriv_add₂] rw [partialDeriv_add₂] rw [partialDeriv_add₂] exact add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁)) (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁)) (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂)) exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl exact h₁.differentiable one_le_two exact h₂.differentiable one_le_two exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl exact h₁.differentiable one_le_two exact h₂.differentiable one_le_two theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s) : ∀ x ∈ s, Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by unfold Complex.laplace simp intro x hx have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by intro z hz convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) apply ContDiffOn.differentiableOn h₁ one_le_two have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by intro z hz convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) apply ContDiffOn.differentiableOn h₂ one_le_two have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by apply Filter.eventuallyEq_iff_exists_mem.2 use s constructor · exact IsOpen.mem_nhds hs hx · intro z hz apply partialDeriv_add₂_differentiableAt exact hf₁ z hz exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 apply A₀.differentiableAt (Preorder.le_refl 1) have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 exact A₀.differentiableAt (Preorder.le_refl 1) rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂] have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by apply Filter.eventuallyEq_iff_exists_mem.2 use s constructor · exact IsOpen.mem_nhds hs hx · intro z hz apply partialDeriv_add₂_differentiableAt exact hf₁ z hz exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I exact A₀.differentiableAt (Preorder.le_refl 1) have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I exact A₀.differentiableAt (Preorder.le_refl 1) rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄] -- I am super confused at this point because the tactic 'ring' does not work. -- I do not understand why. So, I need to do things by hand. rw [add_assoc] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)] rw [add_comm] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)] rw [add_comm] theorem laplace_add_ContDiffAt {f₁ f₂ : ℂ → F} {x : ℂ} (h₁ : ContDiffAt ℝ 2 f₁ x) (h₂ : ContDiffAt ℝ 2 f₂ x) : Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by unfold Complex.laplace simp have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two repeat rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)] rw [partialDeriv_add₂_differentiableAt] -- I am super confused at this point because the tactic 'ring' does not work. -- I do not understand why. So, I need to do things by hand. rw [add_assoc] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)] rw [add_comm] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)] rw [add_comm] repeat apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl theorem laplace_add_ContDiffAt' {f₁ f₂ : ℂ → F} {x : ℂ} (h₁ : ContDiffAt ℝ 2 f₁ x) (h₂ : ContDiffAt ℝ 2 f₂ x) : Δ (f₁ + f₂) =ᶠ[nhds x] (Δ f₁) + (Δ f₂):= by unfold Complex.laplace rw [add_assoc] nth_rw 5 [add_comm] rw [add_assoc] rw [← add_assoc] have dualPDeriv : ∀ v : ℂ, partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x] partialDeriv ℝ v (partialDeriv ℝ v f₁) + partialDeriv ℝ v (partialDeriv ℝ v f₂) := by intro v have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two have t₁ : partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x] partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) := by exact partialDeriv_eventuallyEq' ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁) v have t₂ : partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) =ᶠ[nhds x] (partialDeriv ℝ v (partialDeriv ℝ v f₁)) + (partialDeriv ℝ v (partialDeriv ℝ v f₂)) := by apply partialDeriv_add₂_contDiffAt ℝ apply partialDeriv_contDiffAt exact h₁ apply partialDeriv_contDiffAt exact h₂ apply Filter.EventuallyEq.trans t₁ t₂ have eventuallyEq_add {a₁ a₂ b₁ b₂ : ℂ → F} (h : a₁ =ᶠ[nhds x] b₁) (h' : a₂ =ᶠ[nhds x] b₂) : (a₁ + a₂) =ᶠ[nhds x] (b₁ + b₂) := by have {c₁ c₂ : ℂ → F} : (fun x => c₁ x + c₂ x) = c₁ + c₂ := by rfl rw [← this, ← this] exact Filter.EventuallyEq.add h h' apply eventuallyEq_add · exact dualPDeriv 1 · nth_rw 2 [add_comm] exact dualPDeriv Complex.I theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by intro v unfold Complex.laplace repeat rw [partialDeriv_smul₂] simp theorem laplace_compCLMAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : ContDiffAt ℝ 2 f x) : Δ (l ∘ f) x = (l ∘ (Δ f)) x := by obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by obtain ⟨u, hu₁, hu₂⟩ : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by apply ContDiffAt.contDiffOn h rfl simp obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁ use v constructor · exact IsOpen.mem_nhds hv₂ hv₃ · constructor exact hv₂ constructor · exact hv₃ · exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁ have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by intro w apply Filter.eventuallyEq_iff_exists_mem.2 use v constructor · exact IsOpen.mem_nhds hv₂ hv₃ · intro y hy apply partialDeriv_compContLinAt let V := ContDiffOn.differentiableOn hv₄ one_le_two apply DifferentiableOn.differentiableAt V apply IsOpen.mem_nhds assumption assumption unfold Complex.laplace simp rw [partialDeriv_eventuallyEq ℝ (D 1) 1] rw [partialDeriv_compContLinAt] rw [partialDeriv_eventuallyEq ℝ (D Complex.I) Complex.I] rw [partialDeriv_compContLinAt] simp -- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I) le_rfl -- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl theorem laplace_compCLM {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) : Δ (l ∘ f) = l ∘ (Δ f) := by funext z exact laplace_compCLMAt h.contDiffAt theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} : Δ (l ∘ f) = l ∘ (Δ f) := by unfold Complex.laplace repeat rw [partialDeriv_compCLE] simp