import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Mathlib.Data.Complex.Module import Mathlib.Data.Complex.Order import Mathlib.Data.Complex.Exponential import Mathlib.Analysis.RCLike.Basic import Mathlib.Topology.Algebra.InfiniteSum.Module import Mathlib.Topology.Instances.RealVectorSpace import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by intro f let fx := Real.partialDeriv 1 f let fxx := Real.partialDeriv 1 fx let fy := Real.partialDeriv Complex.I f let fyy := Real.partialDeriv Complex.I fy exact fxx + fyy def Harmonic (f : ℂ → ℂ) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) : Harmonic f := by -- f is real C² have f_is_real_C2 : ContDiff ℝ 2 f := ContDiff.restrict_scalars ℝ (Differentiable.contDiff h) have fI_is_real_differentiable : Differentiable ℝ (Real.partialDeriv 1 f) := by exact (partialDeriv_contDiff f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞) constructor · -- f is two times real continuously differentiable exact f_is_real_C2 · -- Laplace of f is zero unfold Complex.laplace rw [CauchyRiemann₄ h] have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → ℂ, Differentiable ℝ g → Real.partialDeriv v (s • g) = s • (Real.partialDeriv v g) := by intro v s g hg let sMuls : ℂ →L[ℝ] ℂ := { toFun := fun x ↦ s * x map_add' := by intro x y ring map_smul' := by intro m x simp ring } have : s • g = sMuls ∘ g := by rfl rw [this] rw [partialDeriv_compContLin hg] rfl rw [this] rw [partialDeriv_comm f_is_real_C2 Complex.I 1] rw [CauchyRiemann₄ h] rw [this] rw [← smul_assoc] simp -- Subgoals coming from the application of 'this' -- Differentiable ℝ (Real.partialDeriv 1 f) exact fI_is_real_differentiable -- Differentiable ℝ (Real.partialDeriv 1 f) exact fI_is_real_differentiable