import Mathlib.Analysis.InnerProductSpace.PiL2 open RCLike Real Filter open Topology ComplexConjugate open LinearMap (BilinForm) open TensorProduct open InnerProductSpace open Inner example {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] {F : Type*} [NormedAddCommGroup F] [InnerProductSpace ℝ F] : 1 = 0 := by let e : E →ₗ[ℝ] E →ₗ[ℝ] ℝ := innerₗ E let f : F →ₗ[ℝ] F →ₗ[ℝ] ℝ := innerₗ F let e₂ := TensorProduct.map₂ e f let l := TensorProduct.lid ℝ ℝ have : ∀ e1 e2 : E, ∀ f1 f2 : F, e₂ (e1 ⊗ f1) (e2 ⊗ f2) = let X : InnerProductSpace.Core ℝ (E ⊗[ℝ] F) := { inner := by intro a b exact TensorProduct.lid ℝ ℝ ((TensorProduct.map₂ (innerₗ E) (innerₗ F)) a b) conj_symm := by simp intro x y unfold innerₗ simp sorry nonneg_re := _ definite := _ add_left := _ smul_left := _ } let inner : E ⊗[𝕜] E → E ⊗[𝕜] E → 𝕜 := --let x := TensorProduct.lift --E.inner --TensorProduct.map₂ sorry sorry