import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.Analysis.Convex.SpecificFunctions.Deriv import Nevanlinna.analyticAt open Interval Topology open Real Filter MeasureTheory intervalIntegral structure Divisor (U : Set ℂ) where toFun : ℂ → ℤ supportInU : toFun.support ⊆ U locallyFiniteInU : ∀ x ∈ U, toFun =ᶠ[𝓝[≠] x] 0 instance (U : Set ℂ) : CoeFun (Divisor U) (fun _ ↦ ℂ → ℤ) where coe := Divisor.toFun attribute [coe] Divisor.toFun