import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.MeasureTheory.Integral.CircleIntegral import Mathlib.MeasureTheory.Integral.IntervalIntegral import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.stronglyMeromorphicOn_eliminate import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral /- Integral and Integrability up to changes on codiscrete sets -/ theorem d {U S : Set ℂ} {c : ℂ} {r : ℝ} (hr : r ≠ 0) (hU : Metric.sphere c |r| ⊆ U) (hS : S ∈ Filter.codiscreteWithin U) : Countable ((circleMap c r)⁻¹' Sᶜ) := by have : (circleMap c r)⁻¹' (S ∪ Uᶜ)ᶜ = (circleMap c r)⁻¹' Sᶜ := by simp [(by simpa : (circleMap c r)⁻¹' U = ⊤)] rw [← this] apply Set.Countable.preimage_circleMap _ c hr have : DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by rw [discreteTopology_subtype_iff] rw [mem_codiscreteWithin] at hS; simp at hS intro x hx rw [← mem_iff_inf_principal_compl, (by ext z; simp; tauto : S ∪ Uᶜ = (U \ S)ᶜ)] rw [Set.compl_union, compl_compl] at hx exact hS x hx.2 apply TopologicalSpace.separableSpace_iff_countable.1 exact TopologicalSpace.SecondCountableTopology.to_separableSpace theorem integrability_congr_changeDiscrete₀ {f₁ f₂ : ℂ → ℝ} {U : Set ℂ} {r : ℝ} (hU : Metric.sphere 0 |r| ⊆ U) (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) : IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by intro hf₁ by_cases hr : r = 0 · unfold circleMap rw [hr] simp have : f₂ ∘ (fun (θ : ℝ) ↦ 0) = (fun r ↦ f₂ 0) := by exact rfl rw [this] simp · apply IntervalIntegrable.congr hf₁ rw [Filter.eventuallyEq_iff_exists_mem] use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z} constructor · apply Set.Countable.measure_zero (d hr hU hf) · tauto theorem integrability_congr_changeDiscrete {f₁ f₂ : ℂ → ℝ} {U : Set ℂ} {r : ℝ} (hU : Metric.sphere (0 : ℂ) |r| ⊆ U) (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) : IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) ↔ IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by constructor · exact integrability_congr_changeDiscrete₀ hU hf · exact integrability_congr_changeDiscrete₀ hU (EventuallyEq.symm hf) theorem integral_congr_changeDiscrete {f₁ f₂ : ℂ → ℝ} {U : Set ℂ} {r : ℝ} (hr : r ≠ 0) (hU : Metric.sphere 0 |r| ⊆ U) (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) : ∫ (x : ℝ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ℝ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by apply intervalIntegral.integral_congr_ae rw [eventually_iff_exists_mem] use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z} constructor · apply Set.Countable.measure_zero (d hr hU hf) · tauto theorem MeromorphicOn.integrable_log_abs_f {f : ℂ → ℂ} {r : ℝ} (hr : 0 < r) (h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) r)) (h₂f : ∃ u : (Metric.closedBall (0 : ℂ) r), (h₁f u u.2).order ≠ ⊤) : IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := by sorry have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by sorry have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by sorry obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by rfl rw [this] have : Metric.sphere (0 : ℂ) |r| ⊆ Metric.closedBall (0 : ℂ) r := by sorry rw [integrability_congr_changeDiscrete this h₃g] apply IntervalIntegrable.add sorry sorry