import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Mathlib.Data.Complex.Module import Mathlib.Data.Complex.Order import Mathlib.Data.Complex.Exponential import Mathlib.Analysis.RCLike.Basic import Mathlib.Order.Filter.Basic import Mathlib.Topology.Algebra.InfiniteSum.Module import Mathlib.Topology.Basic import Mathlib.Topology.Instances.RealVectorSpace import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G] noncomputable def Complex.laplace (f : ℂ → F) : ℂ → F := partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f) notation "Δ" => Complex.laplace theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ x = Δ f₂ x := by unfold Complex.laplace simp rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1] rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I] theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂) : Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by unfold Complex.laplace rw [partialDeriv_add₂] rw [partialDeriv_add₂] rw [partialDeriv_add₂] rw [partialDeriv_add₂] exact add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁)) (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁)) (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂)) exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl exact h₁.differentiable one_le_two exact h₂.differentiable one_le_two exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl exact h₁.differentiable one_le_two exact h₂.differentiable one_le_two theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s) : ∀ x ∈ s, Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by unfold Complex.laplace simp intro x hx have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by intro z hz convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) apply ContDiffOn.differentiableOn h₁ one_le_two have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by intro z hz convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) apply ContDiffOn.differentiableOn h₂ one_le_two have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by apply Filter.eventuallyEq_iff_exists_mem.2 use s constructor · exact IsOpen.mem_nhds hs hx · intro z hz apply partialDeriv_add₂_differentiableAt exact hf₁ z hz exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂] have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by apply Filter.eventuallyEq_iff_exists_mem.2 use s constructor · exact IsOpen.mem_nhds hs hx · intro z hz apply partialDeriv_add₂_differentiableAt exact hf₁ z hz exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄] -- I am super confused at this point because the tactic 'ring' does not work. -- I do not understand why. So, I need to do things by hand. rw [add_assoc] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)] rw [add_comm] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)] rw [add_comm] theorem laplace_add_ContDiffAt {f₁ f₂ : ℂ → F} {x : ℂ} (h₁ : ContDiffAt ℝ 2 f₁ x) (h₂ : ContDiffAt ℝ 2 f₂ x) : Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by unfold Complex.laplace simp have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two repeat rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)] rw [partialDeriv_add₂_differentiableAt] -- I am super confused at this point because the tactic 'ring' does not work. -- I do not understand why. So, I need to do things by hand. rw [add_assoc] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)] rw [add_comm] rw [add_assoc] rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)] rw [add_comm] repeat apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by intro v unfold Complex.laplace repeat rw [partialDeriv_smul₂] simp theorem laplace_compCLMAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : ContDiffAt ℝ 2 f x) : Δ (l ∘ f) x = (l ∘ (Δ f)) x := by obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by obtain ⟨u, hu₁, hu₂⟩ : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by apply ContDiffAt.contDiffOn h rfl obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁ use v constructor · exact IsOpen.mem_nhds hv₂ hv₃ · constructor exact hv₂ constructor · exact hv₃ · exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁ have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by intro w apply Filter.eventuallyEq_iff_exists_mem.2 use v constructor · exact IsOpen.mem_nhds hv₂ hv₃ · intro y hy apply partialDeriv_compContLinAt let V := ContDiffOn.differentiableOn hv₄ one_le_two apply DifferentiableOn.differentiableAt V apply IsOpen.mem_nhds assumption assumption unfold Complex.laplace simp rw [partialDeriv_eventuallyEq ℝ (D 1) 1] rw [partialDeriv_compContLinAt] rw [partialDeriv_eventuallyEq ℝ (D Complex.I) Complex.I] rw [partialDeriv_compContLinAt] simp -- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I) le_rfl -- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl theorem laplace_compCLM {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) : Δ (l ∘ f) = l ∘ (Δ f) := by funext z exact laplace_compCLMAt h.contDiffAt theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} : Δ (l ∘ f) = l ∘ (Δ f) := by unfold Complex.laplace repeat rw [partialDeriv_compCLE] simp