import Mathlib.Analysis.Analytic.IsolatedZeros import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Analytic.Linear theorem AnalyticAt.order_mul {f₁ f₂ : ℂ → ℂ} {z₀ : ℂ} (hf₁ : AnalyticAt ℂ f₁ z₀) (hf₂ : AnalyticAt ℂ f₂ z₀) : (AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by by_cases h₂f₁ : hf₁.order = ⊤ · simp [h₂f₁] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · by_cases h₂f₂ : hf₂.order = ⊤ · simp [h₂f₂] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂ obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂ use t constructor · intro y hy rw [h₁t y hy] ring · exact ⟨h₂t, h₃t⟩ · obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁)) obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂)) rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add] rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)] use g₁ * g₂ constructor · exact AnalyticAt.mul h₁g₁ h₁g₂ · constructor · simp; tauto · obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁ obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂ rw [eventually_nhds_iff] use t₁ ∩ t₂ constructor · intro y hy rw [h₁t₁ y hy.1, h₁t₂ y hy.2] simp; ring · constructor · exact IsOpen.inter h₂t₁ h₂t₂ · exact Set.mem_inter h₃t₁ h₃t₂ theorem AnalyticAt.order_eq_zero_iff {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order = 0 ↔ f z₀ ≠ 0 := by have : (0 : ENat) = (0 : Nat) := by rfl rw [this, AnalyticAt.order_eq_nat_iff hf 0] constructor · intro hz obtain ⟨g, _, h₂g, h₃g⟩ := hz simp at h₃g rw [Filter.Eventually.self_of_nhds h₃g] tauto · intro hz use f constructor · exact hf · constructor · exact hz · simp theorem AnalyticAt.supp_order_toNat {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f z₀) : hf.order.toNat ≠ 0 → f z₀ = 0 := by contrapose intro h₁f simp [hf.order_eq_zero_iff.2 h₁f] theorem ContinuousLinearEquiv.analyticAt (ℓ : ℂ ≃L[ℂ] ℂ) (z₀ : ℂ) : AnalyticAt ℂ (⇑ℓ) z₀ := ℓ.toContinuousLinearMap.analyticAt z₀ theorem eventually_nhds_comp_composition {f₁ f₂ ℓ : ℂ → ℂ} {z₀ : ℂ} (hf : ∀ᶠ (z : ℂ) in nhds (ℓ z₀), f₁ z = f₂ z) (hℓ : Continuous ℓ) : ∀ᶠ (z : ℂ) in nhds z₀, (f₁ ∘ ℓ) z = (f₂ ∘ ℓ) z := by obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 hf apply eventually_nhds_iff.2 use ℓ⁻¹' t constructor · intro y hy exact h₁t (ℓ y) hy · constructor · apply IsOpen.preimage exact ContinuousLinearEquiv.continuous ℓ exact h₂t · exact h₃t theorem AnalyticAt.order_congr {f₁ f₂ : ℂ → ℂ} {z₀ : ℂ} (hf₁ : AnalyticAt ℂ f₁ z₀) (hf₂ : AnalyticAt ℂ f₂ z₀) (hf : ∀ᶠ (z : ℂ) in nhds z₀, f₁ z = f₂ z) : hf₁.order = hf₂.order := by sorry theorem AnalyticAt.order_comp_CLE (ℓ : ℂ ≃L[ℂ] ℂ) {f : ℂ → ℂ} {z₀ : ℂ} (hf : AnalyticAt ℂ f (ℓ z₀)) : hf.order = (hf.comp (ℓ.analyticAt z₀)).order := by by_cases h₁f : hf.order = ⊤ · rw [h₁f] rw [AnalyticAt.order_eq_top_iff] at h₁f let A := eventually_nhds_comp_composition h₁f ℓ.continuous simp at A have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A] have : this.order = ⊤ := by rw [AnalyticAt.order_eq_top_iff] simp rw [this] · let n := hf.order.toNat have hn : hf.order = n := Eq.symm (ENat.coe_toNat h₁f) rw [hn] rw [AnalyticAt.order_eq_nat_iff] at hn obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn have A := eventually_nhds_comp_composition h₃g ℓ.continuous simp only [Function.comp_apply] at A have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by apply analyticAt_const rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A] simp rw [AnalyticAt.order_mul] --rw [hn, AnalyticAt.order_eq_nat_iff] rw [AnalyticAt.order_eq_nat_iff] at hn obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn use g ∘ ℓ constructor · exact h₁g.comp (ℓ.analyticAt z₀) · constructor · exact h₂g · rw [eventually_nhds_iff] rw [eventually_nhds_iff] at h₃g obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₃g use ℓ⁻¹' t constructor · intro y hy simp rw [h₁t (ℓ y) hy] sorry · constructor · apply IsOpen.preimage exact ContinuousLinearEquiv.continuous ℓ exact h₂t · exact h₃t