import Mathlib.MeasureTheory.Integral.CircleIntegral import Nevanlinna.divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.meromorphicOn_divisor open Real noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r) theorem loglogpos {r : ℝ} : log r = logpos r - logpos r⁻¹ := by unfold logpos rw [log_inv] by_cases h : 0 ≤ log r · simp [h] · simp at h have : 0 ≤ -log r := Left.nonneg_neg_iff.2 (le_of_lt h) simp [h, this] exact neg_nonneg.mp this theorem logpos_norm {r : ℝ} : logpos r = 2⁻¹ * (log r + ‖log r‖) := by by_cases hr : 0 ≤ log r · rw [norm_of_nonneg hr] have : logpos r = log r := by unfold logpos simp [hr] rw [this] ring · rw [norm_of_nonpos (le_of_not_ge hr)] have : logpos r = 0 := by unfold logpos simp exact le_of_not_ge hr rw [this] ring