import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicAt import Mathlib.Algebra.BigOperators.Finprod open Topology /- Strongly MeromorphicOn -/ def StronglyMeromorphicOn (f : ℂ → ℂ) (U : Set ℂ) := ∀ z ∈ U, StronglyMeromorphicAt f z /- Strongly MeromorphicAt is Meromorphic -/ theorem StronglyMeromorphicOn.meromorphicOn {f : ℂ → ℂ} {U : Set ℂ} (hf : StronglyMeromorphicOn f U) : MeromorphicOn f U := by intro z hz exact StronglyMeromorphicAt.meromorphicAt (hf z hz) /- Strongly MeromorphicOn of non-negative order is analytic -/ theorem StronglyMeromorphicOn.analytic {f : ℂ → ℂ} {U : Set ℂ} (h₁f : StronglyMeromorphicOn f U) (h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order): ∀ z ∈ U, AnalyticAt ℂ f z := by intro z hz apply StronglyMeromorphicAt.analytic exact h₂f z hz exact h₁f z hz /- Analytic functions are strongly meromorphic -/ theorem AnalyticOn.stronglyMeromorphicOn {f : ℂ → ℂ} {U : Set ℂ} (h₁f : AnalyticOnNhd ℂ f U) : StronglyMeromorphicOn f U := by intro z hz apply AnalyticAt.stronglyMeromorphicAt exact h₁f z hz /- Make strongly MeromorphicAt -/ noncomputable def MeromorphicOn.makeStronglyMeromorphicOn {f : ℂ → ℂ} {U : Set ℂ} (hf : MeromorphicOn f U) : ℂ → ℂ := by intro z by_cases hz : z ∈ U · exact (hf z hz).makeStronglyMeromorphicAt z · exact f z theorem makeStronglyMeromorphicOn_changeDiscrete {f : ℂ → ℂ} {U : Set ℂ} {z₀ : ℂ} (hf : MeromorphicOn f U) (hz₀ : z₀ ∈ U) : hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by apply Filter.eventually_iff_exists_mem.2 let A := (hf z₀ hz₀).eventually_analyticAt obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A use V constructor · assumption · intro v hv unfold MeromorphicOn.makeStronglyMeromorphicOn by_cases h₂v : v ∈ U · simp [h₂v] rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id] exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv) · simp [h₂v]