import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.meromorphicOn import Nevanlinna.meromorphicOn_divisor import Nevanlinna.mathlibAddOn open scoped Interval Topology theorem analyticAt_ratlPolynomial₁ {z : ℂ} (d : ℂ → ℤ) (P : Finset ℂ) : z ∉ P → AnalyticAt ℂ (∏ u ∈ P, fun z ↦ (z - u) ^ d u) z := by intro hz rw [Finset.prod_fn] apply Finset.analyticAt_prod intro u hu apply AnalyticAt.zpow apply AnalyticAt.sub apply analyticAt_id apply analyticAt_const rw [sub_ne_zero, ne_comm] exact ne_of_mem_of_not_mem hu hz theorem stronglyMeromorphicOn_ratlPolynomial₂ (d : ℂ → ℤ) (P : Finset ℂ) : StronglyMeromorphicOn (∏ u ∈ P, fun z ↦ (z - u) ^ d u) ⊤ := by intro z hz by_cases h₂z : z ∈ P · rw [← Finset.mul_prod_erase P _ h₂z] right use d z use ∏ x ∈ P.erase z, fun z => (z - x) ^ d x constructor · have : z ∉ P.erase z := Finset.not_mem_erase z P apply analyticAt_ratlPolynomial₁ d (P.erase z) this · constructor · simp only [Finset.prod_apply] rw [Finset.prod_ne_zero_iff] intro u hu apply zpow_ne_zero rw [sub_ne_zero] by_contra hCon rw [hCon] at hu let A := Finset.not_mem_erase u P tauto · exact Filter.Eventually.of_forall (congrFun rfl) · apply AnalyticAt.stronglyMeromorphicAt exact analyticAt_ratlPolynomial₁ d P (z := z) h₂z theorem stronglyMeromorphicOn_ratlPolynomial₃ (d : ℂ → ℤ) : StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) ⊤ := by by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite · rw [finprod_eq_prod _ hd] apply stronglyMeromorphicOn_ratlPolynomial₂ d hd.toFinset · rw [finprod_of_infinite_mulSupport hd] apply AnalyticOn.stronglyMeromorphicOn apply analyticOnNhd_const theorem stronglyMeromorphicOn_ratlPolynomial₃U (d : ℂ → ℤ) (U : Set ℂ) : StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by intro z hz exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial) theorem ratlPoly_mulsupport (d : ℂ → ℤ) : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by ext u constructor · intro h simp at h simp by_contra hCon rw [hCon] at h simp at h tauto · intro h simp by_contra hCon let A := congrFun hCon u simp at A have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A rw [zpow_ne_zero_iff h] at t₁ tauto theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ {z : ℂ} (d : ℂ → ℤ) (h₁d : Set.Finite d.support) : (((stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn) z trivial).order = d z := by rw [MeromorphicAt.order_eq_int_iff] use ∏ x ∈ h₁d.toFinset.erase z, fun z => (z - x) ^ d x constructor · have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset apply analyticAt_ratlPolynomial₁ d (h₁d.toFinset.erase z) this · constructor · simp only [Finset.prod_apply] rw [Finset.prod_ne_zero_iff] intro u hu apply zpow_ne_zero rw [sub_ne_zero] by_contra hCon rw [hCon] at hu let A := Finset.not_mem_erase u h₁d.toFinset tauto · apply Filter.Eventually.of_forall intro x have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by rwa [ratlPoly_mulsupport d] rw [finprod_eq_prod _ t₀] have t₁ : h₁d.toFinset = t₀.toFinset := by simp rw [eq_comm] exact ratlPoly_mulsupport d rw [t₁] simp rw [eq_comm] have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset by_cases hz : z ∈ h₁d.toFinset · rw [t₁] at hz conv => right rw [← Finset.mul_prod_erase t₀.toFinset _ hz] · have : t₀.toFinset = t₀.toFinset.erase z := by rw [eq_comm] apply Finset.erase_eq_of_not_mem rwa [t₁] at hz rw [this] have : (x - z) ^ d z = 1 := by simp at hz rw [hz] simp rw [this] simp theorem stronglyMeromorphicOn_ratlPolynomial₃order {z : ℂ} (d : ℂ → ℤ) : ((stronglyMeromorphicOn_ratlPolynomial₃ d) z trivial).meromorphicAt.order ≠ ⊤ := by have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by ext u constructor · intro h simp at h simp by_contra hCon rw [hCon] at h simp at h tauto · intro h simp by_contra hCon let A := congrFun hCon u simp at A have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A rw [zpow_ne_zero_iff h] at t₁ tauto by_cases hd : Set.Finite (Function.support d) · rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d hd] simp · rw [← h₂d] at hd have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by exact hd simp_rw [finprod_of_infinite_mulSupport this] have : AnalyticAt ℂ (1 : ℂ → ℂ) z := by exact analyticAt_const rw [AnalyticAt.meromorphicAt_order this] rw [this.order_eq_zero_iff.2 (by simp)] simp theorem stronglyMeromorphicOn_divisor_ratlPolynomial (d : ℂ → ℤ) (h₁d : Set.Finite d.support) : (stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn.divisor = d := by funext z rw [MeromorphicOn.divisor] simp rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d] simp theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U {U : Set ℂ} (d : ℂ → ℤ) (h₁d : Set.Finite d.support) (h₂d : d.support ⊆ U) : (stronglyMeromorphicOn_ratlPolynomial₃U d U).meromorphicOn.divisor = d := by funext z rw [MeromorphicOn.divisor] simp by_cases hz : z ∈ U · simp [hz] rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d] simp · simp [hz] rw [eq_comm, ← Function.nmem_support] tauto