import Mathlib.Topology.DiscreteSubset theorem codiscreteWithin_congr {X : Type u_1} [TopologicalSpace X] {S T U : Set X} (hST : S ∩ U = T ∩ U) : S ∈ Filter.codiscreteWithin U ↔ T ∈ Filter.codiscreteWithin U := by repeat rw [mem_codiscreteWithin] rw [← Set.diff_inter_self_eq_diff (t := S)] rw [← Set.diff_inter_self_eq_diff (t := T)] rw [hST]