Compare commits
No commits in common. "f732c82f922f31388413a650da943e56c9cb39f6" and "e41a08f1d55b12887eaf14a8c05ec0d84792f6c8" have entirely different histories.
f732c82f92
...
e41a08f1d5
|
@ -1,25 +1,21 @@
|
|||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Nevanlinna.analyticAt
|
||||
|
||||
|
||||
noncomputable def AnalyticOn.order
|
||||
{f : ℂ → ℂ} {U : Set ℂ} (hf : AnalyticOn ℂ f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : U}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(n : ℕ) :
|
||||
hf.order z₀ = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
|
@ -48,7 +44,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀.1}ᶜ
|
||||
use {z₀}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
|
@ -91,10 +87,59 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
dsimp [AnalyticOn.order]
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticAt.order_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
|
@ -103,7 +148,7 @@ theorem AnalyticOn.eliminateZeros
|
|||
{A : Finset U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(n : ℂ → ℕ) :
|
||||
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
|
@ -163,7 +208,8 @@ theorem AnalyticOn.eliminateZeros
|
|||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ (n b₀)).1 this
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
|
@ -213,14 +259,14 @@ theorem discreteZeros
|
|||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
|
||||
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
||||
intro z
|
||||
|
||||
let A := XX hU h₁f h₂f z.1.2
|
||||
let A := XX hU h₁f h₂f z.2.1
|
||||
rw [eq_comm] at A
|
||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||
|
@ -265,9 +311,9 @@ theorem discreteZeros
|
|||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
|
||||
have F := h₂ε₂ y.1 h₂y
|
||||
have : f y = 0 := by exact y.2
|
||||
rw [this] at F
|
||||
rw [y.2.2] at F
|
||||
simp at F
|
||||
|
||||
have : g y.1 ≠ 0 := by
|
||||
|
@ -285,19 +331,19 @@ theorem finiteZeros
|
|||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Set.Finite (U.restrict f⁻¹' {0}) := by
|
||||
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
|
||||
apply IsClosed.preimage
|
||||
apply continuousOn_iff_continuous_restrict.1
|
||||
exact h₁f.continuousOn
|
||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
||||
apply IsCompact.of_isClosed_subset h₂U
|
||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||
exact IsCompact.isClosed h₂U
|
||||
exact isClosed_singleton
|
||||
exact Set.inter_subset_left
|
||||
|
||||
have : CompactSpace U := by
|
||||
exact isCompact_iff_compactSpace.mp h₂U
|
||||
|
||||
apply (IsClosed.isCompact closedness).finite
|
||||
apply hinter.finite
|
||||
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
|
||||
exact discreteZeros h₁U h₁f h₂f
|
||||
rfl
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros
|
||||
|
@ -309,7 +355,15 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
let ι : U → ℂ := Subtype.val
|
||||
|
||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||
|
||||
have : A₁.Finite := by
|
||||
apply Set.Finite.preimage
|
||||
exact Set.injOn_subtype_val
|
||||
exact finiteZeros h₁U h₂U h₁f h₂f
|
||||
let A := this.toFinset
|
||||
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
|
@ -346,10 +400,14 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
|
||||
dsimp [A₁, ι]
|
||||
simp
|
||||
exact C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
exact this
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
|
|
Loading…
Reference in New Issue