Compare commits
2 Commits
f480ae2a0f
...
2544242b13
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 2544242b13 | |
Stefan Kebekus | 47ab90446f |
|
@ -11,6 +11,7 @@ import Mathlib.Data.Complex.Exponential
|
|||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Order.Filter.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Basic
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
@ -79,7 +80,19 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
Complex.laplace (l ∘ f) x = (l ∘ (Complex.laplace f)) x := by
|
||||
|
||||
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
sorry
|
||||
have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
apply ContDiffAt.contDiffOn h
|
||||
rfl
|
||||
obtain ⟨u, hu₁, hu₂⟩ := this
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
use v
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hv₂ hv₃
|
||||
· constructor
|
||||
exact hv₂
|
||||
constructor
|
||||
· exact hv₃
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
||||
|
||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||
|
@ -106,13 +119,12 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
simp
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
||||
unfold partialDeriv
|
||||
|
||||
sorry
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I)
|
||||
rfl
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
||||
|
||||
sorry
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1)
|
||||
rfl
|
||||
|
||||
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
|
|
Loading…
Reference in New Issue