Compare commits
No commits in common. "e7b23a6b2c68594aecd3c5b815bd1c4e43283ce4" and "e5f25514827a2dc93fa7631584d25c810715398c" have entirely different histories.
e7b23a6b2c
...
e5f2551482
@ -85,30 +85,5 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.reCLM ∘ f) := by
|
||||
|
||||
constructor
|
||||
· -- Continuous differentiability
|
||||
apply ContDiff.comp
|
||||
exact ContinuousLinearMap.contDiff Complex.reCLM
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
· rw [laplace_compContLin]
|
||||
simp
|
||||
intro z
|
||||
rw [(holomorphic_is_harmonic h).right z]
|
||||
simp
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
|
||||
|
||||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.imCLM ∘ f) := by
|
||||
|
||||
constructor
|
||||
· -- Continuous differentiability
|
||||
apply ContDiff.comp
|
||||
exact ContinuousLinearMap.contDiff Complex.imCLM
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
· rw [laplace_compContLin]
|
||||
simp
|
||||
intro z
|
||||
rw [(holomorphic_is_harmonic h).right z]
|
||||
simp
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
sorry
|
||||
|
@ -15,7 +15,6 @@ import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
||||
@ -44,6 +43,7 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂
|
||||
exact h₂.differentiable one_le_two
|
||||
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
intro v
|
||||
unfold Complex.laplace
|
||||
@ -57,18 +57,3 @@ theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Compl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
simp
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
Loading…
x
Reference in New Issue
Block a user