Compare commits

...

2 Commits

Author SHA1 Message Date
Stefan Kebekus
e7b23a6b2c Update complexHarmonic.lean 2024-05-13 10:10:10 +02:00
Stefan Kebekus
5e3f9c463f Update laplace.lean 2024-05-13 09:52:15 +02:00
2 changed files with 42 additions and 2 deletions

View File

@ -85,5 +85,30 @@ theorem holomorphic_is_harmonic {f : } (h : Differentiable f) :
theorem re_of_holomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic (Complex.reCLM ∘ f) := by
constructor
· -- Continuous differentiability
apply ContDiff.comp
exact ContinuousLinearMap.contDiff Complex.reCLM
exact ContDiff.restrict_scalars (Differentiable.contDiff h)
· rw [laplace_compContLin]
simp
intro z
rw [(holomorphic_is_harmonic h).right z]
simp
exact ContDiff.restrict_scalars (Differentiable.contDiff h)
sorry
theorem im_of_holomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic (Complex.imCLM ∘ f) := by
constructor
· -- Continuous differentiability
apply ContDiff.comp
exact ContinuousLinearMap.contDiff Complex.imCLM
exact ContDiff.restrict_scalars (Differentiable.contDiff h)
· rw [laplace_compContLin]
simp
intro z
rw [(holomorphic_is_harmonic h).right z]
simp
exact ContDiff.restrict_scalars (Differentiable.contDiff h)

View File

@ -15,6 +15,7 @@ import Nevanlinna.cauchyRiemann
import Nevanlinna.partialDeriv
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace G]
noncomputable def Complex.laplace : ( → F) → ( → F) :=
@ -43,7 +44,6 @@ theorem laplace_add {f₁ f₂ : → F} (h₁ : ContDiff 2 f₁) (h₂
exact h₂.differentiable one_le_two
theorem laplace_smul {f : → F} (h : ContDiff 2 f) : ∀ v : , Complex.laplace (v • f) = v • (Complex.laplace f) := by
intro v
unfold Complex.laplace
@ -57,3 +57,18 @@ theorem laplace_smul {f : → F} (h : ContDiff 2 f) : ∀ v : , Compl
exact h.differentiable one_le_two
exact (partialDeriv_contDiff h 1).differentiable le_rfl
exact h.differentiable one_le_two
theorem laplace_compContLin {f : → F} {l : F →L[] G} (h : ContDiff 2 f) :
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
unfold Complex.laplace
rw [partialDeriv_compContLin]
rw [partialDeriv_compContLin]
rw [partialDeriv_compContLin]
rw [partialDeriv_compContLin]
simp
exact (partialDeriv_contDiff h Complex.I).differentiable le_rfl
exact h.differentiable one_le_two
exact (partialDeriv_contDiff h 1).differentiable le_rfl
exact h.differentiable one_le_two