Compare commits
2 Commits
b2f04c1dfa
...
0c15de05b8
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 0c15de05b8 | |
Stefan Kebekus | ef75cb4579 |
|
@ -30,7 +30,7 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
||||||
rw [fderiv.comp]
|
rw [fderiv.comp]
|
||||||
simp
|
simp
|
||||||
fun_prop
|
fun_prop
|
||||||
exact h.restrictScalars ℝ
|
exact h.restrictScalars ℝ
|
||||||
apply (ContinuousLinearMap.differentiableAt l).comp
|
apply (ContinuousLinearMap.differentiableAt l).comp
|
||||||
exact h.restrictScalars ℝ
|
exact h.restrictScalars ℝ
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,39 @@
|
||||||
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
|
||||||
|
noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) := by
|
||||||
|
intro f
|
||||||
|
let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1,0⟩
|
||||||
|
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1,0⟩
|
||||||
|
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
||||||
|
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0,1⟩
|
||||||
|
exact f₁₁ + f₂₂
|
||||||
|
|
||||||
|
noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||||
|
intro f
|
||||||
|
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||||
|
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
||||||
|
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||||
|
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
||||||
|
exact f₁₁ + f₂₂
|
||||||
|
|
||||||
|
|
||||||
|
theorem xx : ∀ f : ℂ → , f = 0 := by
|
||||||
|
intro f
|
||||||
|
|
||||||
|
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||||
|
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||||
|
|
||||||
|
have : ∀ z, fderiv ℂ f z = 0 := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
have : (fun x ↦ lineDeriv ℝ f x 1) = (fun x ↦ lineDeriv ℝ f x Complex.I) := by
|
||||||
|
|
||||||
|
unfold lineDeriv
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
sorry
|
|
@ -11,6 +11,6 @@ noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) :
|
||||||
|
|
||||||
exact f₁₁ + f₂₂
|
exact f₁₁ + f₂₂
|
||||||
|
|
||||||
structure Harmonic (f : ℝ × ℝ → ℝ) : Prop where
|
|
||||||
ker_Laplace : ∀ x, Real.laplace f x = 0
|
def Harmonic (f : ℝ × ℝ → ℝ) : Prop :=
|
||||||
cont_Diff : ContDiff ℝ 2 f
|
(ContDiff ℝ 2 f) ∧ (∀ x, Real.laplace f x = 0)
|
||||||
|
|
Loading…
Reference in New Issue