Compare commits

..

No commits in common. "a95c34fd056c303885963c1e79d541a840a5eff0" and "2146909338edb0ce44f9d6c3569bb4441166ba0d" have entirely different histories.

2 changed files with 0 additions and 92 deletions

View File

@ -2,7 +2,6 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
open Interval Topology
open Real Filter MeasureTheory intervalIntegral
@ -21,73 +20,3 @@ instance
coe := Divisor.toFun
attribute [coe] Divisor.toFun
theorem Divisor.discreteSupport
{U : Set }
(hU : IsClosed U)
(D : Divisor U) :
DiscreteTopology D.toFun.support := by
apply discreteTopology_subtype_iff.mpr
intro x hx
apply inf_principal_eq_bot.mpr
by_cases h₁x : x ∈ U
· let A := D.locallyFiniteInU x h₁x
refine mem_nhdsWithin.mpr ?_
rw [eventuallyEq_nhdsWithin_iff] at A
obtain ⟨U, h₁U, h₂U, h₃U⟩ := eventually_nhds_iff.1 A
use U
constructor
· exact h₂U
· constructor
· exact h₃U
· intro y hy
let C := h₁U y hy.1 hy.2
tauto
· refine mem_nhdsWithin.mpr ?_
use Uᶜ
constructor
· simpa
· constructor
· tauto
· intro y _
let A := D.supportInU
simp at A
simp
exact False.elim (h₁x (A x hx))
theorem Divisor.closedSupport
{U : Set }
(hU : IsClosed U)
(D : Divisor U) :
IsClosed D.toFun.support := by
rw [← isOpen_compl_iff]
rw [isOpen_iff_eventually]
intro x hx
by_cases h₁x : x ∈ U
· have A := D.locallyFiniteInU x h₁x
simp [A]
simp at hx
let B := Mnhds A hx
simpa
· rw [eventually_iff_exists_mem]
use Uᶜ
constructor
· exact IsClosed.compl_mem_nhds hU h₁x
· intro y hy
simp
exact Function.nmem_support.mp fun a => hy (D.supportInU a)
theorem Divisor.finiteSupport
{U : Set }
(hU : IsCompact U)
(D : Divisor U) :
Set.Finite D.toFun.support := by
apply IsCompact.finite
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
exact D.supportInU
· exact D.discreteSupport hU.isClosed

View File

@ -1,7 +1,6 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
import Nevanlinna.analyticAt
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
@ -52,23 +51,3 @@ theorem meromorphicAt_congr'
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
open Topology Filter
lemma Mnhds
{α : Type}
{f g : α}
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t