Compare commits
2 Commits
9a7c8b82a4
...
a1f96806a1
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | a1f96806a1 | |
Stefan Kebekus | f65c84a14b |
|
@ -1,6 +1,13 @@
|
|||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
|
||||
lemma int₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1)
|
||||
:
|
||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
|
@ -64,21 +71,32 @@ theorem jensen_case_R_eq_one
|
|||
exact hz A
|
||||
|
||||
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
intro z hz
|
||||
rw [s₀ z hz]
|
||||
simp
|
||||
|
||||
rw [s₁ 0 h₂f] at t₁
|
||||
|
||||
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
sorry
|
||||
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
rw [h₃F]
|
||||
simp
|
||||
constructor
|
||||
· exact h₂F (circleMap 0 1 x)
|
||||
· by_contra h'
|
||||
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||
have : circleMap 0 1 x = a s := by
|
||||
rw [← sub_zero (circleMap 0 1 x)]
|
||||
nth_rw 2 [← h₂s]
|
||||
simp
|
||||
let A := ha s
|
||||
rw [← this] at A
|
||||
simp at A
|
||||
|
||||
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
|
||||
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁
|
||||
rw [intervalIntegral.integral_sub] at t₁
|
||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||
|
||||
have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
|
||||
sorry
|
||||
|
||||
simp_rw [this] at t₁
|
||||
simp_rw [int₀ (ha _)] at t₁
|
||||
simp at t₁
|
||||
rw [t₁]
|
||||
simp
|
||||
|
@ -89,7 +107,7 @@ theorem jensen_case_R_eq_one
|
|||
simp
|
||||
rfl
|
||||
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
intro i hi
|
||||
intro i _
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
|
@ -115,7 +133,7 @@ theorem jensen_case_R_eq_one
|
|||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
simp
|
||||
sorry
|
||||
exact h₀
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
|
@ -125,7 +143,7 @@ theorem jensen_case_R_eq_one
|
|||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_finset_sum
|
||||
intro i hi
|
||||
intro i _
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
|
|
|
@ -0,0 +1,456 @@
|
|||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
|
||||
|
||||
noncomputable def primitive
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||
ℂ → (ℂ → E) → (ℂ → E) := by
|
||||
intro z₀
|
||||
intro f
|
||||
exact fun z ↦ (∫ (x : ℝ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ℝ) in z₀.im..z.im, f ⟨z.re, x⟩
|
||||
|
||||
|
||||
theorem primitive_zeroAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(z₀ : ℂ) :
|
||||
(primitive z₀ f) z₀ = 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
|
||||
|
||||
theorem primitive_fderivAtBasepointZero
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
apply hasDerivAt_iff_isLittleO.2
|
||||
simp
|
||||
rw [Asymptotics.isLittleO_iff]
|
||||
intro c hc
|
||||
|
||||
have {z : ℂ} {e : E} : z • e = (∫ (_ : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ℝ) in (0)..(z.im), e:= by
|
||||
simp
|
||||
rw [smul_comm]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
have : z.re • e = (z.re : ℂ) • e := by exact rfl
|
||||
rw [this, ← add_smul]
|
||||
simp
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
arg 2
|
||||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl
|
||||
rw [this]
|
||||
continuity
|
||||
have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp hf
|
||||
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
continuity
|
||||
fun_prop
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
||||
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||
have h₂s : 0 ∈ s := by
|
||||
apply Set.mem_preimage.mpr
|
||||
apply Metric.mem_ball_self
|
||||
linarith
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||
|
||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
· apply Metric.ball_mem_nhds 0
|
||||
linarith
|
||||
· intro y hy
|
||||
have h₁y : |y.re| < ε / 4 := by
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
linarith
|
||||
have h₂y : |y.im| < ε / 4 := by
|
||||
calc |y.im|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
linarith
|
||||
|
||||
have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
|
||||
let A := h.1
|
||||
let B := h.2
|
||||
rcases le_total 0 y' with hy | hy
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonneg hy]
|
||||
rw [abs_of_nonneg (le_of_lt A)]
|
||||
exact B
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonpos hy]
|
||||
rw [abs_of_nonpos]
|
||||
linarith [h.1]
|
||||
exact B
|
||||
|
||||
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.re| := intervalComputation hx
|
||||
_ < ε / 4 := h₁y
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
simp
|
||||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
linarith
|
||||
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.im| := intervalComputation hx
|
||||
_ < ε / 4 := h₂y
|
||||
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
simp
|
||||
|
||||
calc Complex.abs { re := y.re, im := x }
|
||||
_ ≤ |y.re| + |x| := by
|
||||
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
||||
_ < ε := by
|
||||
linarith
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
apply norm_add_le
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
simp
|
||||
rw [norm_smul]
|
||||
simp
|
||||
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply add_le_add
|
||||
exact t₁
|
||||
exact t₂
|
||||
_ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by
|
||||
simp
|
||||
rw [mul_add]
|
||||
_ ≤ (c / (4 : ℝ)) * (4 * ‖y‖) := by
|
||||
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
|
||||
calc |y.re| + |y.im|
|
||||
_ ≤ ‖y‖ + ‖y‖ := by
|
||||
apply add_le_add
|
||||
apply Complex.abs_re_le_abs
|
||||
apply Complex.abs_im_le_abs
|
||||
_ ≤ 4 * ‖y‖ := by
|
||||
rw [← two_mul]
|
||||
apply mul_le_mul
|
||||
linarith
|
||||
rfl
|
||||
exact norm_nonneg y
|
||||
linarith
|
||||
|
||||
apply mul_le_mul
|
||||
rfl
|
||||
exact this
|
||||
apply add_nonneg
|
||||
apply abs_nonneg
|
||||
apply abs_nonneg
|
||||
linarith
|
||||
_ ≤ c * ‖y‖ := by
|
||||
linarith
|
||||
|
||||
|
||||
theorem primitive_translation
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(z₀ t : ℂ) :
|
||||
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
|
||||
funext z
|
||||
unfold primitive
|
||||
simp
|
||||
|
||||
let g : ℝ → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
|
||||
have {x : ℝ} : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
|
||||
congr 1
|
||||
apply Complex.ext <;> simp
|
||||
conv =>
|
||||
left
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
|
||||
simp
|
||||
|
||||
congr 1
|
||||
let g : ℝ → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
|
||||
have {x : ℝ} : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
|
||||
congr 1
|
||||
apply Complex.ext <;> simp
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
|
||||
simp
|
||||
|
||||
|
||||
theorem primitive_hasDerivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Continuous f)
|
||||
(z₀ : ℂ) :
|
||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||
|
||||
let g := f ∘ fun z ↦ z + z₀
|
||||
have : Continuous g := by continuity
|
||||
let A := primitive_fderivAtBasepointZero g this
|
||||
simp at A
|
||||
|
||||
let B := primitive_translation g z₀ z₀
|
||||
simp at B
|
||||
have : (g ∘ fun z ↦ (z - z₀)) = f := by
|
||||
funext z
|
||||
dsimp [g]
|
||||
simp
|
||||
rw [this] at B
|
||||
rw [B]
|
||||
have : f z₀ = (1 : ℂ) • (f z₀) := by
|
||||
exact (MulAction.one_smul (f z₀)).symm
|
||||
conv =>
|
||||
arg 2
|
||||
rw [this]
|
||||
|
||||
apply HasDerivAt.scomp
|
||||
simp
|
||||
have : g 0 = f z₀ := by simp [g]
|
||||
rw [← this]
|
||||
exact A
|
||||
apply HasDerivAt.sub_const
|
||||
have : (fun (x : ℂ) ↦ x) = id := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
exact hasDerivAt_id z₀
|
||||
|
||||
|
||||
lemma integrability₁
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
continuity
|
||||
|
||||
|
||||
lemma integrability₂
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
continuity
|
||||
fun_prop
|
||||
|
||||
|
||||
theorem primitive_additivity
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z₁ : ℂ) :
|
||||
(fun z ↦ (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁)) = 0 := by
|
||||
funext z
|
||||
|
||||
|
||||
|
||||
unfold primitive
|
||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₁ f hf
|
||||
apply integrability₁ f hf
|
||||
rw [this]
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₂ f hf
|
||||
apply integrability₂ f hf
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
have {a b c d e f g h : E} : (a + b) + (c + d) - (e + f) - (g + h) = b + (a - g) - e - f + d - h + (c) := by
|
||||
abel
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ (hf.differentiableOn)
|
||||
have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
|
||||
apply Complex.ext
|
||||
· simp
|
||||
· simp
|
||||
simp_rw [this] at A
|
||||
have {x : ℝ} {w : ℂ} : w.re + x * Complex.I = { re := w.re, im := x } := by
|
||||
apply Complex.ext
|
||||
· simp
|
||||
· simp
|
||||
simp_rw [this] at A
|
||||
rw [← A]
|
||||
abel
|
||||
|
||||
|
||||
theorem primitive_additivity'
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z₁ : ℂ) :
|
||||
primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by
|
||||
|
||||
nth_rw 1 [← sub_zero (primitive z₀ f)]
|
||||
rw [← primitive_additivity f hf z₀ z₁]
|
||||
|
||||
funext z
|
||||
simp
|
||||
abel
|
||||
|
||||
|
||||
theorem primitive_hasDerivAt
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z : ℂ) :
|
||||
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||
rw [primitive_additivity' f hf z₀ z]
|
||||
rw [← add_zero (f z)]
|
||||
apply HasDerivAt.add
|
||||
apply primitive_hasDerivAtBasepoint
|
||||
exact hf.continuous
|
||||
apply hasDerivAt_const
|
||||
|
||||
|
||||
theorem primitive_differentiable
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
Differentiable ℂ (primitive z₀ f) := by
|
||||
intro z
|
||||
exact (primitive_hasDerivAt hf z₀ z).differentiableAt
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ℂ ℂ).flip (f z)) z := by
|
||||
intro z
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
||||
intro z
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_fderiv
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
||||
intro z
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_fderiv'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
||||
intro z
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt' hf z₀ z
|
|
@ -5,7 +5,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "d2b1546c5fc05a06426e3f6ee1cb020e71be5592",
|
||||
"rev": "0f3e143dffdc3a591662f3401ce1d7a3405227c0",
|
||||
"name": "batteries",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
|
@ -25,7 +25,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "622d52c803db99ff4ea4fb442c1db9e91aed944c",
|
||||
"rev": "209712c78b16c795453b6da7f7adbda4589a8f21",
|
||||
"name": "aesop",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "master",
|
||||
|
@ -35,27 +35,27 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "d1b33202c3a29a079f292de65ea438648123b635",
|
||||
"rev": "c87908619cccadda23f71262e6898b9893bffa36",
|
||||
"name": "proofwidgets",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "v0.0.39",
|
||||
"inputRev": "v0.0.40",
|
||||
"inherited": true,
|
||||
"configFile": "lakefile.lean"},
|
||||
{"url": "https://github.com/leanprover/lean4-cli",
|
||||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "",
|
||||
"rev": "a11566029bd9ec4f68a65394e8c3ff1af74c1a29",
|
||||
"rev": "2cf1030dc2ae6b3632c84a09350b675ef3e347d0",
|
||||
"name": "Cli",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
"inherited": true,
|
||||
"configFile": "lakefile.lean"},
|
||||
"configFile": "lakefile.toml"},
|
||||
{"url": "https://github.com/leanprover-community/import-graph",
|
||||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "68b518c9b352fbee16e6d632adcb7a6d0760e2b7",
|
||||
"rev": "e7e90d90a62e6d12cbb27cbbfc31c094ee4ecc58",
|
||||
"name": "importGraph",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
|
@ -65,7 +65,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "",
|
||||
"rev": "cc495260156b40dcbd55b947c047061e15344000",
|
||||
"rev": "c96401c7496392a2200dc78c0b334df0561466dc",
|
||||
"name": "mathlib",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": null,
|
||||
|
|
|
@ -1 +1 @@
|
|||
leanprover/lean4:v4.10.0-rc2
|
||||
leanprover/lean4:v4.10.0
|
||||
|
|
Loading…
Reference in New Issue