Compare commits
No commits in common. "7a281ff514273044912b9781f9b7547eec20ca58" and "7319bf60c0242e20548098cd2af921922e19acc5" have entirely different histories.
7a281ff514
...
7319bf60c0
|
@ -44,10 +44,8 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
|||
simp
|
||||
|
||||
|
||||
theorem CauchyRiemann₄
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
{f : ℂ → F} :
|
||||
(Differentiable ℂ f) → partialDeriv ℝ Complex.I f = Complex.I • partialDeriv ℝ 1 f := by
|
||||
theorem CauchyRiemann₄ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : ℂ → F} : (Differentiable ℂ f)
|
||||
→ partialDeriv ℝ Complex.I f = Complex.I • partialDeriv ℝ 1 f := by
|
||||
intro h
|
||||
unfold partialDeriv
|
||||
|
||||
|
@ -64,21 +62,3 @@ theorem CauchyRiemann₄
|
|||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
||||
|
||||
theorem CauchyRiemann₅ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : ℂ → F} {z : ℂ} : (DifferentiableAt ℂ f z)
|
||||
→ partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
intro h
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
|
|
|
@ -1,4 +1,20 @@
|
|||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Mathlib.Data.Complex.Module
|
||||
import Mathlib.Data.Complex.Order
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.laplace
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||||
|
@ -7,57 +23,11 @@ variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [Comple
|
|||
|
||||
|
||||
def Harmonic (f : ℂ → F) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0)
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
|
||||
def HarmonicAt (f : ℂ → F) (x : ℂ) : Prop :=
|
||||
(ContDiffAt ℝ 2 f x) ∧ (Δ f =ᶠ[nhds x] 0)
|
||||
|
||||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
||||
|
||||
|
||||
theorem HarmonicAt_iff
|
||||
{f : ℂ → F}
|
||||
{x : ℂ} :
|
||||
HarmonicAt f x ↔ ∃ s : Set ℂ, IsOpen s ∧ x ∈ s ∧ (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl
|
||||
simp at h₃s₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂⟩ := (Filter.eventuallyEq_iff_exists_mem.1 hf.2)
|
||||
obtain ⟨s₂, h₁s₂, h₂s₂, h₃s₂⟩ := mem_nhds_iff.1 h₁t₂
|
||||
let s := s₁ ∩ s₂
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.inter h₁s₁ h₂s₂
|
||||
· constructor
|
||||
· exact Set.mem_inter h₂s₁ h₃s₂
|
||||
· constructor
|
||||
· exact h₃s₁.mono (Set.inter_subset_left s₁ s₂)
|
||||
· intro z hz
|
||||
exact h₂t₂ (h₁s₂ hz.2)
|
||||
· intro hyp
|
||||
obtain ⟨s, h₁s, h₂s, h₁f, h₂f⟩ := hyp
|
||||
constructor
|
||||
· apply h₁f.contDiffAt
|
||||
apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· exact h₂f
|
||||
|
||||
|
||||
theorem HarmonicAt_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : HarmonicAt f₁ x ↔ HarmonicAt f₂ x := by
|
||||
constructor
|
||||
· intro h₁
|
||||
constructor
|
||||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 (Filter.EventuallyEq.symm h)
|
||||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' (Filter.EventuallyEq.symm h)) h₁.2
|
||||
· intro h₁
|
||||
constructor
|
||||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 h
|
||||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' h) h₁.2
|
||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Complex.laplace f z = 0)
|
||||
|
||||
|
||||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||||
|
@ -73,50 +43,6 @@ theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀
|
|||
exact (uHyp.2.2.2) x ⟨xHyp, uHyp.2.1⟩
|
||||
|
||||
|
||||
theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (hf₁₂ : ∀ x ∈ s, f₁ x = f₂ x) :
|
||||
HarmonicOn f₁ s ↔ HarmonicOn f₂ s := by
|
||||
constructor
|
||||
· intro h₁
|
||||
constructor
|
||||
· apply ContDiffOn.congr h₁.1
|
||||
intro x hx
|
||||
rw [eq_comm]
|
||||
exact hf₁₂ x hx
|
||||
· intro z hz
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
simp
|
||||
refine mem_nhds_iff.mpr ?_
|
||||
use s
|
||||
constructor
|
||||
· exact hf₁₂
|
||||
· constructor
|
||||
· exact hs
|
||||
· exact hz
|
||||
rw [← laplace_eventuallyEq this]
|
||||
exact h₁.2 z hz
|
||||
· intro h₁
|
||||
constructor
|
||||
· apply ContDiffOn.congr h₁.1
|
||||
intro x hx
|
||||
exact hf₁₂ x hx
|
||||
· intro z hz
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
simp
|
||||
refine mem_nhds_iff.mpr ?_
|
||||
use s
|
||||
constructor
|
||||
· exact hf₁₂
|
||||
· constructor
|
||||
· exact hs
|
||||
· exact hz
|
||||
rw [laplace_eventuallyEq this]
|
||||
exact h₁.2 z hz
|
||||
|
||||
|
||||
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
|
||||
Harmonic (f₁ + f₂) := by
|
||||
constructor
|
||||
|
@ -128,55 +54,17 @@ theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmon
|
|||
simp
|
||||
|
||||
|
||||
theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : HarmonicOn f₁ s) (h₂ : HarmonicOn f₂ s) :
|
||||
HarmonicOn (f₁ + f₂) s := by
|
||||
constructor
|
||||
· exact ContDiffOn.add h₁.1 h₂.1
|
||||
· intro z hz
|
||||
rw [laplace_add_ContDiffOn hs h₁.1 h₂.1 z hz]
|
||||
rw [h₁.2 z hz, h₂.2 z hz]
|
||||
simp
|
||||
|
||||
|
||||
theorem harmonicAt_add_harmonicAt_is_harmonicAt
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{x : ℂ}
|
||||
(h₁ : HarmonicAt f₁ x)
|
||||
(h₂ : HarmonicAt f₂ x) :
|
||||
HarmonicAt (f₁ + f₂) x := by
|
||||
constructor
|
||||
· exact ContDiffAt.add h₁.1 h₂.1
|
||||
· apply Filter.EventuallyEq.trans (laplace_add_ContDiffAt' h₁.1 h₂.1)
|
||||
apply Filter.EventuallyEq.trans (Filter.EventuallyEq.add h₁.2 h₂.2)
|
||||
simp
|
||||
rfl
|
||||
|
||||
|
||||
theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) :
|
||||
Harmonic (c • f) := by
|
||||
constructor
|
||||
· exact ContDiff.const_smul c h.1
|
||||
· rw [laplace_smul]
|
||||
· rw [laplace_smul h.1]
|
||||
dsimp
|
||||
intro z
|
||||
rw [h.2 z]
|
||||
simp
|
||||
|
||||
|
||||
theorem harmonicAt_smul_const_is_harmonicAt
|
||||
{f : ℂ → F}
|
||||
{x : ℂ}
|
||||
{c : ℝ}
|
||||
(h : HarmonicAt f x) :
|
||||
HarmonicAt (c • f) x := by
|
||||
constructor
|
||||
· exact ContDiffAt.const_smul c h.1
|
||||
· rw [laplace_smul]
|
||||
have A := Filter.EventuallyEq.const_smul h.2 c
|
||||
simp at A
|
||||
assumption
|
||||
|
||||
|
||||
theorem harmonic_iff_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (hc : c ≠ 0) :
|
||||
Harmonic f ↔ Harmonic (c • f) := by
|
||||
constructor
|
||||
|
@ -185,18 +73,6 @@ theorem harmonic_iff_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (hc : c
|
|||
exact fun a => harmonic_smul_const_is_harmonic a
|
||||
|
||||
|
||||
theorem harmonicAt_iff_smul_const_is_harmonicAt
|
||||
{f : ℂ → F}
|
||||
{x : ℂ}
|
||||
{c : ℝ}
|
||||
(hc : c ≠ 0) :
|
||||
HarmonicAt f x ↔ HarmonicAt (c • f) x := by
|
||||
constructor
|
||||
· exact harmonicAt_smul_const_is_harmonicAt
|
||||
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
|
||||
exact fun a => harmonicAt_smul_const_is_harmonicAt a
|
||||
|
||||
|
||||
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
||||
Harmonic (l ∘ f) := by
|
||||
|
||||
|
@ -205,7 +81,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G}
|
|||
apply ContDiff.comp
|
||||
exact ContinuousLinearMap.contDiff l
|
||||
exact h.1
|
||||
· rw [laplace_compCLM]
|
||||
· rw [laplace_compContLin]
|
||||
simp
|
||||
intro z
|
||||
rw [h.2 z]
|
||||
|
@ -213,55 +89,19 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G}
|
|||
exact ContDiff.restrict_scalars ℝ h.1
|
||||
|
||||
|
||||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) :
|
||||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) :
|
||||
HarmonicOn (l ∘ f) s := by
|
||||
|
||||
constructor
|
||||
· -- Continuous differentiability
|
||||
apply ContDiffOn.continuousLinearMap_comp
|
||||
exact h.1
|
||||
· -- Vanishing of Laplace
|
||||
intro z zHyp
|
||||
rw [laplace_compCLMAt]
|
||||
· rw [laplace_compContLin]
|
||||
simp
|
||||
intro z zHyp
|
||||
rw [h.2 z]
|
||||
simp
|
||||
assumption
|
||||
apply ContDiffOn.contDiffAt h.1
|
||||
exact IsOpen.mem_nhds hs zHyp
|
||||
|
||||
|
||||
theorem harmonicAt_comp_CLM_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
{z : ℂ}
|
||||
{l : F₁ →L[ℝ] G}
|
||||
(h : HarmonicAt f z) :
|
||||
HarmonicAt (l ∘ f) z := by
|
||||
|
||||
constructor
|
||||
· -- ContDiffAt ℝ 2 (⇑l ∘ f) z
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact h.1
|
||||
· -- Δ (⇑l ∘ f) =ᶠ[nhds z] 0
|
||||
obtain ⟨r, h₁r, h₂r⟩ := h.1.contDiffOn le_rfl
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁r
|
||||
obtain ⟨t, h₁t, h₂t⟩ := Filter.eventuallyEq_iff_exists_mem.1 h.2
|
||||
obtain ⟨u, h₁u, h₂u, h₃u⟩ := mem_nhds_iff.1 h₁t
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s ∩ u
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
exact IsOpen.inter h₂s h₂u
|
||||
constructor
|
||||
· exact h₃s
|
||||
· exact h₃u
|
||||
· intro x xHyp
|
||||
rw [laplace_compCLMAt]
|
||||
simp
|
||||
rw [h₂t]
|
||||
simp
|
||||
exact h₁u xHyp.2
|
||||
apply (h₂r.mono h₁s).contDiffAt (IsOpen.mem_nhds h₂s xHyp.1)
|
||||
|
||||
|
||||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||||
|
@ -279,34 +119,222 @@ theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ]
|
|||
exact harmonic_comp_CLM_is_harmonic
|
||||
|
||||
|
||||
theorem harmonicAt_iff_comp_CLE_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
{z : ℂ}
|
||||
{l : F₁ ≃L[ℝ] G₁} :
|
||||
HarmonicAt f z ↔ HarmonicAt (l ∘ f) z := by
|
||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||
Harmonic f := by
|
||||
|
||||
-- f is real C²
|
||||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
|
||||
have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by
|
||||
exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
|
||||
constructor
|
||||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||
· -- f is two times real continuously differentiable
|
||||
exact f_is_real_C2
|
||||
|
||||
· -- Laplace of f is zero
|
||||
unfold Complex.laplace
|
||||
rw [CauchyRiemann₄ h]
|
||||
|
||||
-- This lemma says that partial derivatives commute with complex scalar
|
||||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||||
intro v s g hg
|
||||
|
||||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||||
-- horrible, there must be better ways to do that.
|
||||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||||
{
|
||||
toFun := fun x ↦ s • x
|
||||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||||
cont := continuous_const_smul s
|
||||
}
|
||||
|
||||
-- Bring the goal into a form that is recognized by
|
||||
-- partialDeriv_compContLin.
|
||||
have : s • g = sMuls ∘ g := by rfl
|
||||
rw [this]
|
||||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
|
||||
rw [partialDeriv_compContLin ℝ hg]
|
||||
rfl
|
||||
|
||||
rw [this]
|
||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||
rw [CauchyRiemann₄ h]
|
||||
rw [this]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
nth_rewrite 2 [this]
|
||||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||||
|
||||
-- Subgoals coming from the application of 'this'
|
||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||
exact fI_is_real_differentiable
|
||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||
exact fI_is_real_differentiable
|
||||
|
||||
|
||||
theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ ≃L[ℝ] G₁} (hs : IsOpen s) :
|
||||
HarmonicOn f s ↔ HarmonicOn (l ∘ f) s := by
|
||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.reCLM ∘ f) := by
|
||||
apply harmonic_comp_CLM_is_harmonic
|
||||
exact holomorphic_is_harmonic h
|
||||
|
||||
|
||||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.imCLM ∘ f) := by
|
||||
apply harmonic_comp_CLM_is_harmonic
|
||||
exact holomorphic_is_harmonic h
|
||||
|
||||
|
||||
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.conjCLE ∘ f) := by
|
||||
apply harmonic_iff_comp_CLE_is_harmonic.1
|
||||
exact holomorphic_is_harmonic h
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||
{f : ℂ → ℂ}
|
||||
{s : Set ℂ}
|
||||
(h₁ : DifferentiableOn ℂ f s)
|
||||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||
|
||||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
||||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
||||
|
||||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||
funext z
|
||||
simp
|
||||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||||
rw [Complex.normSq_eq_conj_mul_self]
|
||||
rw [this]
|
||||
exact hyp
|
||||
|
||||
|
||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||
-- THIS IS WHERE WE USE h₃
|
||||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||||
unfold Function.comp
|
||||
funext z
|
||||
simp
|
||||
rw [Complex.log_mul_eq_add_log_iff]
|
||||
|
||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||
rw [Complex.arg_conj]
|
||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
simp
|
||||
tauto
|
||||
rw [this]
|
||||
simp
|
||||
constructor
|
||||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||||
exact h₂ z
|
||||
rw [this]
|
||||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
|
||||
apply harmonic_add_harmonic_is_harmonic
|
||||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
rw [this]
|
||||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||||
|
||||
repeat
|
||||
apply holomorphic_is_harmonic
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphic_is_harmonic
|
||||
{f : ℂ → ℂ}
|
||||
(h₁ : Differentiable ℂ f)
|
||||
(h₂ : ∀ z, f z ≠ 0)
|
||||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
|
||||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
||||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
||||
|
||||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||
funext z
|
||||
simp
|
||||
nth_rewrite 2 [this]
|
||||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||||
rw [Complex.normSq_eq_conj_mul_self]
|
||||
rw [this]
|
||||
exact hyp
|
||||
|
||||
|
||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||
-- THIS IS WHERE WE USE h₃
|
||||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||||
unfold Function.comp
|
||||
funext z
|
||||
simp
|
||||
rw [Complex.log_mul_eq_add_log_iff]
|
||||
|
||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||
rw [Complex.arg_conj]
|
||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
simp
|
||||
tauto
|
||||
rw [this]
|
||||
simp
|
||||
constructor
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||||
exact h₂ z
|
||||
rw [this]
|
||||
|
||||
apply harmonic_add_harmonic_is_harmonic
|
||||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
rw [this]
|
||||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||||
|
||||
repeat
|
||||
apply holomorphic_is_harmonic
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
|
||||
theorem logabs_of_holomorphic_is_harmonic
|
||||
{f : ℂ → ℂ}
|
||||
(h₁ : Differentiable ℂ f)
|
||||
(h₂ : ∀ z, f z ≠ 0)
|
||||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||||
|
||||
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
funext z
|
||||
simp
|
||||
unfold Complex.abs
|
||||
simp
|
||||
rw [Real.log_sqrt]
|
||||
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||
exact Complex.normSq_nonneg (f z)
|
||||
rw [this]
|
||||
|
||||
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
||||
|
||||
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|
||||
|
|
|
@ -1,211 +0,0 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
||||
|
||||
|
||||
theorem holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HarmonicAt f z := by
|
||||
|
||||
let t := {x | HolomorphicAt f x}
|
||||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||||
have hz : z ∈ t := by exact hf
|
||||
|
||||
constructor
|
||||
· -- ContDiffAt ℝ 2 f z
|
||||
exact hf.contDiffAt
|
||||
|
||||
· -- Δ f =ᶠ[nhds z] 0
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use t
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds ht hz
|
||||
· intro w hw
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
rw [partialDeriv_eventuallyEq ℝ hw.CauchyRiemannAt Complex.I]
|
||||
rw [partialDeriv_smul'₂]
|
||||
simp
|
||||
|
||||
rw [partialDeriv_commAt hw.contDiffAt Complex.I 1]
|
||||
rw [partialDeriv_eventuallyEq ℝ hw.CauchyRiemannAt 1]
|
||||
rw [partialDeriv_smul'₂]
|
||||
simp
|
||||
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
|
||||
|
||||
theorem re_of_holomorphicAt_is_harmonicAr
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.reCLM ∘ f) z := by
|
||||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem im_of_holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.imCLM ∘ f) z := by
|
||||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem antiholomorphicAt_is_harmonicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.conjCLE ∘ f) z := by
|
||||
apply harmonicAt_iff_comp_CLE_is_harmonicAt.1
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h₁f : HolomorphicAt f z)
|
||||
(h₂f : f z ≠ 0) :
|
||||
HarmonicAt (Real.log ∘ Complex.normSq ∘ f) z := by
|
||||
|
||||
-- For later use
|
||||
have slitPlaneLemma {z : ℂ} (hz : z ≠ 0) : z ∈ Complex.slitPlane ∨ -z ∈ Complex.slitPlane := by
|
||||
rw [Complex.mem_slitPlane_iff, Complex.mem_slitPlane_iff]
|
||||
simp at hz
|
||||
rw [Complex.ext_iff] at hz
|
||||
push_neg at hz
|
||||
simp at hz
|
||||
simp
|
||||
by_contra contra
|
||||
push_neg at contra
|
||||
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
|
||||
|
||||
-- First prove the theorem for functions with image in the slitPlane
|
||||
have lem₁ : ∀ g : ℂ → ℂ, (HolomorphicAt g z) → (g z ≠ 0) → (g z ∈ Complex.slitPlane) → HarmonicAt (Real.log ∘ Complex.normSq ∘ g) z := by
|
||||
intro g h₁g h₂g h₃g
|
||||
|
||||
-- Rewrite the log |g|² as Complex.log (g * gc)
|
||||
suffices hyp : HarmonicAt (Complex.log ∘ ((Complex.conjCLE ∘ g) * g)) z from by
|
||||
have : Real.log ∘ Complex.normSq ∘ g = Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
|
||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g = Complex.log ∘ ((Complex.conjCLE ∘ g) * g) := by
|
||||
funext x
|
||||
simp
|
||||
rw [Complex.ofReal_log]
|
||||
rw [Complex.normSq_eq_conj_mul_self]
|
||||
exact Complex.normSq_nonneg (g x)
|
||||
rw [← this] at hyp
|
||||
apply harmonicAt_comp_CLM_is_harmonicAt hyp
|
||||
|
||||
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
|
||||
-- This uses the assumption that g z is in Complex.slitPlane
|
||||
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.log ∘ Complex.conjCLE ∘ g + Complex.log ∘ g) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
|
||||
constructor
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
· exact h₁g.differentiableAt.continuousAt
|
||||
· apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
|
||||
constructor
|
||||
· exact h₃g
|
||||
· exact h₂g
|
||||
· intro x hx
|
||||
simp
|
||||
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
|
||||
rw [Complex.arg_conj]
|
||||
simp [Complex.slitPlane_arg_ne_pi hx.1]
|
||||
constructor
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
simp
|
||||
apply hx.2
|
||||
|
||||
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
|
||||
-- This uses the assumption that g z is in Complex.slitPlane
|
||||
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.conjCLE ∘ Complex.log ∘ g + Complex.log ∘ g) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
|
||||
constructor
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
· exact h₁g.differentiableAt.continuousAt
|
||||
· apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
|
||||
constructor
|
||||
· exact h₃g
|
||||
· exact h₂g
|
||||
· intro x hx
|
||||
simp
|
||||
rw [← Complex.log_conj]
|
||||
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
|
||||
rw [Complex.arg_conj]
|
||||
simp [Complex.slitPlane_arg_ne_pi hx.1]
|
||||
constructor
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
simp
|
||||
apply hx.2
|
||||
apply Complex.slitPlane_arg_ne_pi hx.1
|
||||
|
||||
rw [HarmonicAt_eventuallyEq this]
|
||||
apply harmonicAt_add_harmonicAt_is_harmonicAt
|
||||
· rw [← harmonicAt_iff_comp_CLE_is_harmonicAt]
|
||||
apply holomorphicAt_is_harmonicAt
|
||||
apply HolomorphicAt_comp
|
||||
use Complex.slitPlane
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
exact Complex.isOpen_slitPlane
|
||||
assumption
|
||||
· exact fun z a => Complex.differentiableAt_log a
|
||||
exact h₁g
|
||||
· apply holomorphicAt_is_harmonicAt
|
||||
apply HolomorphicAt_comp
|
||||
use Complex.slitPlane
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
exact Complex.isOpen_slitPlane
|
||||
assumption
|
||||
· exact fun z a => Complex.differentiableAt_log a
|
||||
exact h₁g
|
||||
|
||||
by_cases h₃f : f z ∈ Complex.slitPlane
|
||||
· exact lem₁ f h₁f h₂f h₃f
|
||||
· have : Complex.normSq ∘ f = Complex.normSq ∘ (-f) := by funext; simp
|
||||
rw [this]
|
||||
apply lem₁ (-f)
|
||||
· exact HolomorphicAt_neg h₁f
|
||||
· simpa
|
||||
· exact (slitPlaneLemma h₂f).resolve_left h₃f
|
||||
|
||||
|
||||
theorem logabs_of_holomorphicAt_is_harmonic
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h₁f : HolomorphicAt f z)
|
||||
(h₂f : f z ≠ 0) :
|
||||
HarmonicAt (fun w ↦ Real.log ‖f w‖) z := by
|
||||
|
||||
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
funext z
|
||||
simp
|
||||
unfold Complex.abs
|
||||
simp
|
||||
rw [Real.log_sqrt]
|
||||
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||
exact Complex.normSq_nonneg (f z)
|
||||
rw [this]
|
||||
|
||||
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||
apply (harmonicAt_iff_smul_const_is_harmonicAt (inv_ne_zero two_ne_zero)).1
|
||||
exact log_normSq_of_holomorphicAt_is_harmonicAt h₁f h₂f
|
|
@ -1,161 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G]
|
||||
|
||||
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
||||
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
||||
|
||||
|
||||
theorem HolomorphicAt_iff
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x ↔ ∃ s :
|
||||
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
|
||||
use s
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
exact h₂t z (h₁s hz)
|
||||
· intro hyp
|
||||
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
|
||||
use s
|
||||
constructor
|
||||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· assumption
|
||||
|
||||
|
||||
theorem HolomorphicAt_differentiableAt
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x → DifferentiableAt ℂ f x := by
|
||||
intro hf
|
||||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||||
exact h₃s x h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_isOpen
|
||||
(f : E → F) :
|
||||
IsOpen { x : E | HolomorphicAt f x } := by
|
||||
|
||||
rw [← subset_interior_iff_isOpen]
|
||||
intro x hx
|
||||
simp at hx
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
|
||||
use s
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· exact h₁s
|
||||
· intro x hx
|
||||
simp
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hx
|
||||
· exact h₃s
|
||||
· exact h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_comp
|
||||
{g : E → F}
|
||||
{f : F → G}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f (g z))
|
||||
(hg : HolomorphicAt g z) :
|
||||
HolomorphicAt (f ∘ g) z := by
|
||||
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UE ∩ g⁻¹' UF
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· assumption
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
|
||||
assumption
|
||||
· intro x hx
|
||||
apply DifferentiableAt.comp
|
||||
apply h₂UF
|
||||
exact hx.2
|
||||
apply h₂UE
|
||||
exact hx.1
|
||||
|
||||
|
||||
theorem HolomorphicAt_neg
|
||||
{f : E → F}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HolomorphicAt (-f) z := by
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UF
|
||||
constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
apply differentiableAt_neg_iff.mp
|
||||
simp
|
||||
exact h₂UF z hz
|
||||
|
||||
|
||||
theorem HolomorphicAt_contDiffAt
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
ContDiffAt ℝ 2 f z := by
|
||||
|
||||
let t := {x | HolomorphicAt f x}
|
||||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||||
have hz : z ∈ t := by exact hf
|
||||
|
||||
-- ContDiffAt ℝ 2 f z
|
||||
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
|
||||
suffices h : ContDiffOn ℂ 2 f t from by
|
||||
apply ContDiffOn.restrict_scalars ℝ h
|
||||
apply DifferentiableOn.contDiffOn _ ht
|
||||
intro w hw
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
exact HolomorphicAt_differentiableAt hw
|
||||
|
||||
|
||||
theorem CauchyRiemann'₅
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : DifferentiableAt ℂ f z) :
|
||||
partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
|
||||
|
||||
theorem CauchyRiemann'₆
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
|
||||
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hz
|
||||
· intro w hw
|
||||
apply CauchyRiemann'₅
|
||||
exact h₂f w hw
|
|
@ -1,518 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f g : ℝ × ℝ → E)
|
||||
(h₁f : ContDiff ℝ 1 f)
|
||||
(h₁g : ContDiff ℝ 1 g)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ) :
|
||||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||||
|
||||
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅
|
||||
exact Set.countable_empty
|
||||
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
|
||||
exact h₁f.continuous.continuousOn
|
||||
--
|
||||
exact h₁g.continuous.continuousOn
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro x _
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro y _
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
||||
--
|
||||
apply ContinuousOn.integrableOn_compact
|
||||
apply IsCompact.prod
|
||||
exact isCompact_uIcc
|
||||
exact isCompact_uIcc
|
||||
apply ContinuousOn.add
|
||||
apply Continuous.continuousOn
|
||||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
|
||||
apply Continuous.continuousOn
|
||||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
|
||||
|
||||
|
||||
theorem integral_divergence₄
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f g : ℂ → E)
|
||||
(h₁f : ContDiff ℝ 1 f)
|
||||
(h₁g : ContDiff ℝ 1 g)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ) :
|
||||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by
|
||||
|
||||
let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm
|
||||
let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm
|
||||
|
||||
have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl
|
||||
have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl
|
||||
repeat (conv in f { re := _, im := _ } => rw [sfr])
|
||||
repeat (conv in g { re := _, im := _ } => rw [sgr])
|
||||
|
||||
have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by
|
||||
rw [fderiv.comp]
|
||||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||||
tauto
|
||||
apply Differentiable.differentiableAt
|
||||
exact h₁f.differentiable le_rfl
|
||||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||||
conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr']
|
||||
|
||||
have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by
|
||||
rw [fderiv.comp]
|
||||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||||
tauto
|
||||
apply Differentiable.differentiableAt
|
||||
exact h₁g.differentiable le_rfl
|
||||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||||
conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr']
|
||||
|
||||
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
|
||||
-- ContDiff ℝ 1 fr
|
||||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
|
||||
-- ContDiff ℝ 1 gr
|
||||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
|
||||
|
||||
|
||||
theorem integral_divergence₅
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(F : ℂ → E)
|
||||
(hF : Differentiable ℂ F)
|
||||
(lowerLeft upperRight : ℂ) :
|
||||
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, lowerLeft.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨upperRight.re, x⟩ =
|
||||
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, upperRight.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨lowerLeft.re, x⟩ := by
|
||||
|
||||
let h₁f : ContDiff ℝ 1 F := (hF.contDiff : ContDiff ℂ 1 F).restrict_scalars ℝ
|
||||
|
||||
let h₁g : ContDiff ℝ 1 (-Complex.I • F) := by
|
||||
have : -Complex.I • F = fun x ↦ -Complex.I • F x := by rfl
|
||||
rw [this]
|
||||
apply ContDiff.comp
|
||||
exact contDiff_const_smul _
|
||||
exact h₁f
|
||||
|
||||
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ _ F z := by rfl
|
||||
conv at A in (fderiv ℝ F _) _ => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ _ (-Complex.I • F) z := by rfl
|
||||
conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this]
|
||||
conv at A =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
arg 1
|
||||
intro y
|
||||
rw [CauchyRiemann₄ hF]
|
||||
rw [partialDeriv_smul'₂]
|
||||
simp
|
||||
simp at A
|
||||
|
||||
have {t₁ t₂ t₃ t₄ : E} : 0 = (t₁ - t₂) + t₃ + t₄ → t₁ + t₃ = t₂ - t₄ := by
|
||||
intro hyp
|
||||
calc
|
||||
t₁ + t₃ = t₁ + t₃ - 0 := by rw [sub_zero (t₁ + t₃)]
|
||||
_ = t₁ + t₃ - (t₁ - t₂ + t₃ + t₄) := by rw [hyp]
|
||||
_ = t₂ - t₄ := by abel
|
||||
let B := this A
|
||||
repeat
|
||||
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
|
||||
simp at B
|
||||
exact B
|
||||
|
||||
|
||||
noncomputable def primitive
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||
ℂ → (ℂ → E) → (ℂ → E) := by
|
||||
intro z₀
|
||||
intro f
|
||||
exact fun z ↦ (∫ (x : ℝ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ℝ) in z₀.im..z.im, f ⟨z.re, x⟩
|
||||
|
||||
|
||||
theorem primitive_zeroAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(z₀ : ℂ) :
|
||||
(primitive z₀ f) z₀ = 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
|
||||
|
||||
theorem primitive_fderivAtBasepointZero
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
apply hasDerivAt_iff_isLittleO.2
|
||||
simp
|
||||
rw [Asymptotics.isLittleO_iff]
|
||||
intro c hc
|
||||
|
||||
have {z : ℂ} {e : E} : z • e = (∫ (_ : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ℝ) in (0)..(z.im), e:= by
|
||||
simp
|
||||
rw [smul_comm]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
have : z.re • e = (z.re : ℂ) • e := by exact rfl
|
||||
rw [this, ← add_smul]
|
||||
simp
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
arg 2
|
||||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl
|
||||
rw [this]
|
||||
continuity
|
||||
have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : ((fun x => { re := a, im := x }) : ℝ → ℂ) = (fun x => { re := a, im := 0 } + { re := 0, im := x }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
have : (fun x => { re := 0, im := x } : ℝ → ℂ) = Complex.I • Complex.ofRealCLM := by
|
||||
funext x
|
||||
simp
|
||||
have : (x : ℂ) = {re := x, im := 0} := by rfl
|
||||
rw [this]
|
||||
rw [Complex.I_mul]
|
||||
simp
|
||||
continuity
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
||||
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||
have h₂s : 0 ∈ s := by
|
||||
apply Set.mem_preimage.mpr
|
||||
apply Metric.mem_ball_self
|
||||
linarith
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||
|
||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
· apply Metric.ball_mem_nhds 0
|
||||
linarith
|
||||
· intro y hy
|
||||
have h₁y : |y.re| < ε / 4 := by
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
linarith
|
||||
have h₂y : |y.im| < ε / 4 := by
|
||||
calc |y.im|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
linarith
|
||||
|
||||
have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
|
||||
let A := h.1
|
||||
let B := h.2
|
||||
rcases le_total 0 y' with hy | hy
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonneg hy]
|
||||
rw [abs_of_nonneg (le_of_lt A)]
|
||||
exact B
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonpos hy]
|
||||
rw [abs_of_nonpos]
|
||||
linarith [h.1]
|
||||
exact B
|
||||
|
||||
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.re| := intervalComputation hx
|
||||
_ < ε / 4 := h₁y
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
simp
|
||||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
linarith
|
||||
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.im| := intervalComputation hx
|
||||
_ < ε / 4 := h₂y
|
||||
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
simp
|
||||
|
||||
calc Complex.abs { re := y.re, im := x }
|
||||
_ ≤ |y.re| + |x| := by
|
||||
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
||||
_ < ε := by
|
||||
linarith
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
apply norm_add_le
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
simp
|
||||
rw [norm_smul]
|
||||
simp
|
||||
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply add_le_add
|
||||
exact t₁
|
||||
exact t₂
|
||||
_ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by
|
||||
simp
|
||||
rw [mul_add]
|
||||
_ ≤ (c / (4 : ℝ)) * (4 * ‖y‖) := by
|
||||
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
|
||||
calc |y.re| + |y.im|
|
||||
_ ≤ ‖y‖ + ‖y‖ := by
|
||||
apply add_le_add
|
||||
apply Complex.abs_re_le_abs
|
||||
apply Complex.abs_im_le_abs
|
||||
_ ≤ 4 * ‖y‖ := by
|
||||
rw [← two_mul]
|
||||
apply mul_le_mul
|
||||
linarith
|
||||
rfl
|
||||
exact norm_nonneg y
|
||||
linarith
|
||||
|
||||
apply mul_le_mul
|
||||
rfl
|
||||
exact this
|
||||
apply add_nonneg
|
||||
apply abs_nonneg
|
||||
apply abs_nonneg
|
||||
linarith
|
||||
_ ≤ c * ‖y‖ := by
|
||||
linarith
|
||||
|
||||
|
||||
theorem primitive_translation
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(z₀ t : ℂ) :
|
||||
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
|
||||
funext z
|
||||
unfold primitive
|
||||
simp
|
||||
|
||||
let g : ℝ → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
|
||||
have {x : ℝ} : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
|
||||
congr 1
|
||||
apply Complex.ext <;> simp
|
||||
conv =>
|
||||
left
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
|
||||
simp
|
||||
|
||||
congr 1
|
||||
let g : ℝ → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
|
||||
have {x : ℝ} : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
|
||||
congr 1
|
||||
apply Complex.ext <;> simp
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
|
||||
simp
|
||||
|
||||
|
||||
theorem primitive_fderivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{z₀ : ℂ}
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||
|
||||
let g := f ∘ fun z ↦ z + z₀
|
||||
have : Continuous g := by continuity
|
||||
let A := primitive_fderivAtBasepointZero g this
|
||||
simp at A
|
||||
|
||||
let B := primitive_translation g z₀ z₀
|
||||
simp at B
|
||||
have : (g ∘ fun z ↦ (z - z₀)) = f := by
|
||||
funext z
|
||||
dsimp [g]
|
||||
simp
|
||||
rw [this] at B
|
||||
rw [B]
|
||||
have : f z₀ = (1 : ℂ) • (f z₀) := by
|
||||
exact (MulAction.one_smul (f z₀)).symm
|
||||
conv =>
|
||||
arg 2
|
||||
rw [this]
|
||||
|
||||
apply HasDerivAt.scomp
|
||||
simp
|
||||
have : g 0 = f z₀ := by simp [g]
|
||||
rw [← this]
|
||||
exact A
|
||||
apply HasDerivAt.sub_const
|
||||
have : (fun (x : ℂ) ↦ x) = id := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
exact hasDerivAt_id z₀
|
||||
|
||||
|
||||
lemma integrability₁
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
continuity
|
||||
|
||||
|
||||
lemma integrability₂
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : ((fun x => { re := b, im := x }) : ℝ → ℂ) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
continuity
|
||||
fun_prop
|
||||
|
||||
|
||||
theorem primitive_additivity
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z₁ : ℂ) :
|
||||
primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by
|
||||
funext z
|
||||
unfold primitive
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₁ f hf
|
||||
apply integrability₁ f hf
|
||||
rw [this]
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₂ f hf
|
||||
apply integrability₂ f hf
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
let A := integral_divergence₅ f hf ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩
|
||||
simp at A
|
||||
|
||||
have {a b c d : E} : (b + a) + (c + d) = (a + c) + (b + d) := by
|
||||
abel
|
||||
rw [this]
|
||||
rw [A]
|
||||
abel
|
||||
|
||||
|
||||
theorem primitive_fderiv
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{z₀ z : ℂ}
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f) :
|
||||
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||
rw [primitive_additivity f hf z₀ z]
|
||||
rw [← add_zero (f z)]
|
||||
apply HasDerivAt.add
|
||||
apply primitive_fderivAtBasepoint
|
||||
exact hf.continuous
|
||||
apply hasDerivAt_const
|
|
@ -1,147 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G]
|
||||
|
||||
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
||||
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
||||
|
||||
|
||||
theorem HolomorphicAt_iff
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x ↔ ∃ s :
|
||||
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
|
||||
use s
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
exact h₂t z (h₁s hz)
|
||||
· intro hyp
|
||||
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
|
||||
use s
|
||||
constructor
|
||||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· assumption
|
||||
|
||||
|
||||
theorem HolomorphicAt_isOpen
|
||||
(f : E → F) :
|
||||
IsOpen { x : E | HolomorphicAt f x } := by
|
||||
|
||||
rw [← subset_interior_iff_isOpen]
|
||||
intro x hx
|
||||
simp at hx
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
|
||||
use s
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· exact h₁s
|
||||
· intro x hx
|
||||
simp
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hx
|
||||
· exact h₃s
|
||||
· exact h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_comp
|
||||
{g : E → F}
|
||||
{f : F → G}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f (g z))
|
||||
(hg : HolomorphicAt g z) :
|
||||
HolomorphicAt (f ∘ g) z := by
|
||||
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UE ∩ g⁻¹' UF
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· assumption
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
|
||||
assumption
|
||||
· intro x hx
|
||||
apply DifferentiableAt.comp
|
||||
apply h₂UF
|
||||
exact hx.2
|
||||
apply h₂UE
|
||||
exact hx.1
|
||||
|
||||
|
||||
theorem HolomorphicAt_neg
|
||||
{f : E → F}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HolomorphicAt (-f) z := by
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UF
|
||||
constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
apply differentiableAt_neg_iff.mp
|
||||
simp
|
||||
exact h₂UF z hz
|
||||
|
||||
|
||||
theorem HolomorphicAt.contDiffAt
|
||||
[CompleteSpace F]
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
{n : ℕ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
ContDiffAt ℝ n f z := by
|
||||
|
||||
let t := {x | HolomorphicAt f x}
|
||||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||||
have hz : z ∈ t := by exact hf
|
||||
|
||||
-- ContDiffAt ℝ _ f z
|
||||
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
|
||||
suffices h : ContDiffOn ℂ n f t from by
|
||||
apply ContDiffOn.restrict_scalars ℝ h
|
||||
apply DifferentiableOn.contDiffOn _ ht
|
||||
intro w hw
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
-- DifferentiableAt ℂ f w
|
||||
let hfw : HolomorphicAt f w := hw
|
||||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hfw
|
||||
exact h₃s w h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt.differentiableAt
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
DifferentiableAt ℂ f z := by
|
||||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||||
exact h₃s z h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt.CauchyRiemannAt
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
|
||||
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hz
|
||||
· intro w hw
|
||||
let h := h₂f w hw
|
||||
unfold partialDeriv
|
||||
apply CauchyRiemann₅ h
|
|
@ -1,36 +1,28 @@
|
|||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Data.Complex.Module
|
||||
import Mathlib.Data.Complex.Order
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
|
||||
|
||||
noncomputable def Complex.laplace (f : ℂ → F) : ℂ → F :=
|
||||
partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||||
|
||||
notation "Δ" => Complex.laplace
|
||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
||||
fun f ↦ partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||||
|
||||
|
||||
theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ x = Δ f₂ x := by
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1]
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I]
|
||||
|
||||
|
||||
theorem laplace_eventuallyEq' {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ =ᶠ[nhds x] Δ f₂ := by
|
||||
unfold Complex.laplace
|
||||
apply Filter.EventuallyEq.add
|
||||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1
|
||||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I
|
||||
|
||||
|
||||
theorem laplace_add
|
||||
{f₁ f₂ : ℂ → F}
|
||||
(h₁ : ContDiff ℝ 2 f₁)
|
||||
(h₂ : ContDiff ℝ 2 f₂) :
|
||||
Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by
|
||||
|
||||
theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂): Complex.laplace (f₁ + f₂) = (Complex.laplace f₁) + (Complex.laplace f₂) := by
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
|
@ -52,225 +44,39 @@ theorem laplace_add
|
|||
exact h₂.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_add_ContDiffOn
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{s : Set ℂ}
|
||||
(hs : IsOpen s)
|
||||
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||||
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||||
∀ x ∈ s, Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||||
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
intro x hx
|
||||
|
||||
have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by
|
||||
intro z hz
|
||||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn h₁ one_le_two
|
||||
have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by
|
||||
intro z hz
|
||||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn h₂ one_le_two
|
||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hs hx
|
||||
· intro z hz
|
||||
apply partialDeriv_add₂_differentiableAt
|
||||
exact hf₁ z hz
|
||||
exact hf₂ z hz
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||
|
||||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hs hx
|
||||
· intro z hz
|
||||
apply partialDeriv_add₂_differentiableAt
|
||||
exact hf₁ z hz
|
||||
exact hf₂ z hz
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why. So, I need to do things by hand.
|
||||
rw [add_assoc]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||
rw [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
|
||||
theorem laplace_add_ContDiffAt
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{x : ℂ}
|
||||
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||||
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||||
Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||||
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
|
||||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||||
repeat
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)]
|
||||
rw [partialDeriv_add₂_differentiableAt]
|
||||
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why. So, I need to do things by hand.
|
||||
rw [add_assoc]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||
rw [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
repeat
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl
|
||||
|
||||
|
||||
theorem laplace_add_ContDiffAt'
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{x : ℂ}
|
||||
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||||
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||||
Δ (f₁ + f₂) =ᶠ[nhds x] (Δ f₁) + (Δ f₂):= by
|
||||
|
||||
unfold Complex.laplace
|
||||
|
||||
rw [add_assoc]
|
||||
nth_rw 5 [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [← add_assoc]
|
||||
|
||||
have dualPDeriv : ∀ v : ℂ, partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x]
|
||||
partialDeriv ℝ v (partialDeriv ℝ v f₁) + partialDeriv ℝ v (partialDeriv ℝ v f₂) := by
|
||||
|
||||
intro v
|
||||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||||
|
||||
have t₁ : partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x] partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) := by
|
||||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁) v
|
||||
|
||||
have t₂ : partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) =ᶠ[nhds x] (partialDeriv ℝ v (partialDeriv ℝ v f₁)) + (partialDeriv ℝ v (partialDeriv ℝ v f₂)) := by
|
||||
apply partialDeriv_add₂_contDiffAt ℝ
|
||||
apply partialDeriv_contDiffAt
|
||||
exact h₁
|
||||
apply partialDeriv_contDiffAt
|
||||
exact h₂
|
||||
|
||||
apply Filter.EventuallyEq.trans t₁ t₂
|
||||
|
||||
have eventuallyEq_add
|
||||
{a₁ a₂ b₁ b₂ : ℂ → F}
|
||||
(h : a₁ =ᶠ[nhds x] b₁)
|
||||
(h' : a₂ =ᶠ[nhds x] b₂) : (a₁ + a₂) =ᶠ[nhds x] (b₁ + b₂) := by
|
||||
have {c₁ c₂ : ℂ → F} : (fun x => c₁ x + c₂ x) = c₁ + c₂ := by rfl
|
||||
rw [← this, ← this]
|
||||
exact Filter.EventuallyEq.add h h'
|
||||
apply eventuallyEq_add
|
||||
· exact dualPDeriv 1
|
||||
· nth_rw 2 [add_comm]
|
||||
exact dualPDeriv Complex.I
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
intro v
|
||||
unfold Complex.laplace
|
||||
repeat
|
||||
rw [partialDeriv_smul₂]
|
||||
rw [partialDeriv_smul₂]
|
||||
rw [partialDeriv_smul₂]
|
||||
rw [partialDeriv_smul₂]
|
||||
simp
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
||||
theorem laplace_compCLMAt
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
{x : ℂ}
|
||||
(h : ContDiffAt ℝ 2 f x) :
|
||||
Δ (l ∘ f) x = (l ∘ (Δ f)) x := by
|
||||
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
obtain ⟨u, hu₁, hu₂⟩ : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
apply ContDiffAt.contDiffOn h
|
||||
rfl
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
use v
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hv₂ hv₃
|
||||
· constructor
|
||||
exact hv₂
|
||||
constructor
|
||||
· exact hv₃
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
|
||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||
intro w
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use v
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hv₂ hv₃
|
||||
· intro y hy
|
||||
apply partialDeriv_compContLinAt
|
||||
let V := ContDiffOn.differentiableOn hv₄ one_le_two
|
||||
apply DifferentiableOn.differentiableAt V
|
||||
apply IsOpen.mem_nhds
|
||||
assumption
|
||||
assumption
|
||||
|
||||
theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
simp
|
||||
|
||||
rw [partialDeriv_eventuallyEq ℝ (D 1) 1]
|
||||
rw [partialDeriv_compContLinAt]
|
||||
rw [partialDeriv_eventuallyEq ℝ (D Complex.I) Complex.I]
|
||||
rw [partialDeriv_compContLinAt]
|
||||
simp
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I) le_rfl
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl
|
||||
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_compCLM
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
(h : ContDiff ℝ 2 f) :
|
||||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||||
funext z
|
||||
exact laplace_compCLMAt h.contDiffAt
|
||||
|
||||
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} :
|
||||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||||
unfold Complex.laplace
|
||||
repeat
|
||||
rw [partialDeriv_compCLE]
|
||||
simp
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
let l' := (l : F →L[ℝ] G)
|
||||
have : Complex.laplace (l' ∘ f) = l' ∘ (Complex.laplace f) := by
|
||||
exact laplace_compContLin h
|
||||
exact this
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Topology.Basic
|
||||
import Mathlib.Topology.Defs.Filter
|
||||
|
||||
|
||||
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
|
@ -16,28 +14,6 @@ noncomputable def partialDeriv : E → (E → F) → (E → F) :=
|
|||
fun v ↦ (fun f ↦ (fun w ↦ fderiv 𝕜 f w v))
|
||||
|
||||
|
||||
theorem partialDeriv_eventuallyEq'
|
||||
{f₁ f₂ : E → F}
|
||||
{x : E}
|
||||
(h : f₁ =ᶠ[nhds x] f₂) :
|
||||
∀ v : E, partialDeriv 𝕜 v f₁ =ᶠ[nhds x] partialDeriv 𝕜 v f₂ := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
exact Filter.EventuallyEq.fderiv h
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_eventuallyEq
|
||||
{f₁ f₂ : E → F}
|
||||
{x : E}
|
||||
(h : f₁ =ᶠ[nhds x] f₂) :
|
||||
∀ v : E, partialDeriv 𝕜 v f₁ x = partialDeriv 𝕜 v f₂ x := by
|
||||
unfold partialDeriv
|
||||
rw [Filter.EventuallyEq.fderiv_eq h]
|
||||
exact fun v => rfl
|
||||
|
||||
|
||||
theorem partialDeriv_smul₁ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
conv =>
|
||||
|
@ -54,35 +30,21 @@ theorem partialDeriv_add₁ {f : E → F} {v₁ v₂ : E} : partialDeriv 𝕜 (v
|
|||
rw [map_add]
|
||||
|
||||
|
||||
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
funext w
|
||||
|
||||
have : a • f = fun y ↦ a • f y := by rfl
|
||||
rw [this]
|
||||
by_cases ha : a = 0
|
||||
· rw [ha]
|
||||
simp
|
||||
· by_cases hf : DifferentiableAt 𝕜 f w
|
||||
· rw [fderiv_const_smul hf]
|
||||
simp
|
||||
· have : ¬DifferentiableAt 𝕜 (fun y => a • f y) w := by
|
||||
by_contra contra
|
||||
let ZZ := DifferentiableAt.const_smul contra a⁻¹
|
||||
have : (fun y => a⁻¹ • a • f y) = f := by
|
||||
funext i
|
||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
|
||||
simp
|
||||
rw [this] at ZZ
|
||||
exact hf ZZ
|
||||
simp
|
||||
rw [fderiv_zero_of_not_differentiableAt hf]
|
||||
rw [fderiv_zero_of_not_differentiableAt this]
|
||||
simp
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [fderiv_const_smul (h w)]
|
||||
|
||||
|
||||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
|
@ -92,49 +54,7 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f
|
|||
rw [fderiv_add (h₁ w) (h₂ w)]
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x) :
|
||||
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
rw [fderiv_add h₁ h₂]
|
||||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_contDiffAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : ContDiffAt 𝕜 1 f₁ x)
|
||||
(h₂ : ContDiffAt 𝕜 1 f₂ x) :
|
||||
partialDeriv 𝕜 v (f₁ + f₂) =ᶠ[nhds x] (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
|
||||
obtain ⟨f₁', u₁, hu₁, _, hf₁'⟩ := contDiffAt_one_iff.1 h₁
|
||||
obtain ⟨f₂', u₂, hu₂, _, hf₂'⟩ := contDiffAt_one_iff.1 h₂
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use u₁ ∩ u₂
|
||||
constructor
|
||||
· exact Filter.inter_mem hu₁ hu₂
|
||||
· intro x hx
|
||||
simp
|
||||
apply partialDeriv_add₂_differentiableAt 𝕜
|
||||
exact (hf₁' x (Set.mem_of_mem_inter_left hx)).differentiableAt
|
||||
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
|
||||
|
||||
|
||||
theorem partialDeriv_compContLin
|
||||
{f : E → F}
|
||||
{l : F →L[𝕜] G}
|
||||
{v : E}
|
||||
(h : Differentiable 𝕜 f) :
|
||||
partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
|
@ -146,29 +66,6 @@ theorem partialDeriv_compContLin
|
|||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x : E} (h : DifferentiableAt 𝕜 f x) : (partialDeriv 𝕜 v (l ∘ f)) x = (l ∘ partialDeriv 𝕜 v f) x:= by
|
||||
unfold partialDeriv
|
||||
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_compCLE {f : E → F} {l : F ≃L[𝕜] G} {v : E} : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
funext x
|
||||
by_cases hyp : DifferentiableAt 𝕜 f x
|
||||
· let lCLM : F →L[𝕜] G := l
|
||||
suffices shyp : partialDeriv 𝕜 v (lCLM ∘ f) x = (lCLM ∘ partialDeriv 𝕜 v f) x from by tauto
|
||||
apply partialDeriv_compContLinAt
|
||||
exact hyp
|
||||
· unfold partialDeriv
|
||||
rw [fderiv_zero_of_not_differentiableAt]
|
||||
simp
|
||||
rw [fderiv_zero_of_not_differentiableAt]
|
||||
simp
|
||||
exact hyp
|
||||
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
|
||||
exact hyp
|
||||
|
||||
|
||||
theorem partialDeriv_contDiff {n : ℕ} {f : E → F} (h : ContDiff 𝕜 (n + 1) f) : ∀ v : E, ContDiff 𝕜 n (partialDeriv 𝕜 v f) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
|
@ -187,33 +84,6 @@ theorem partialDeriv_contDiff {n : ℕ} {f : E → F} (h : ContDiff 𝕜 (n + 1)
|
|||
exact contDiff_const
|
||||
|
||||
|
||||
theorem partialDeriv_contDiffAt
|
||||
{n : ℕ}
|
||||
{f : E → F}
|
||||
{x : E}
|
||||
(h : ContDiffAt 𝕜 (n + 1) f x) :
|
||||
∀ v : E, ContDiffAt 𝕜 n (partialDeriv 𝕜 v f) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
|
||||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||||
{
|
||||
toFun := fun l ↦ l v
|
||||
map_add' := by simp
|
||||
map_smul' := by simp
|
||||
}
|
||||
|
||||
have : (fun w => (fderiv 𝕜 f w) v) = eval_at_v ∘ (fun w => (fderiv 𝕜 f w)) := by
|
||||
rfl
|
||||
rw [this]
|
||||
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
-- ContDiffAt 𝕜 (↑n) (fun w => fderiv 𝕜 f w) x
|
||||
apply ContDiffAt.fderiv_right h
|
||||
rfl
|
||||
|
||||
|
||||
lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :
|
||||
fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
|
||||
|
||||
|
@ -224,100 +94,17 @@ lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :
|
|||
· simp
|
||||
|
||||
|
||||
lemma partialDeriv_fderivOn
|
||||
{s : Set E}
|
||||
{f : E → F}
|
||||
(hs : IsOpen s)
|
||||
(hf : ContDiffOn 𝕜 2 f s) (a b : E) :
|
||||
∀ z ∈ s, fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
|
||||
|
||||
intro z hz
|
||||
unfold partialDeriv
|
||||
rw [fderiv_clm_apply]
|
||||
· simp
|
||||
· convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 hf).2
|
||||
· simp
|
||||
|
||||
|
||||
lemma partialDeriv_fderivAt
|
||||
{z : E}
|
||||
{f : E → F}
|
||||
(hf : ContDiffAt 𝕜 2 f z)
|
||||
(a b : E) :
|
||||
fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
|
||||
|
||||
unfold partialDeriv
|
||||
rw [fderiv_clm_apply]
|
||||
simp
|
||||
|
||||
-- DifferentiableAt 𝕜 (fun w => fderiv 𝕜 f w) z
|
||||
obtain ⟨f', ⟨u, h₁u, h₂u⟩, hf' ⟩ := contDiffAt_succ_iff_hasFDerivAt.1 hf
|
||||
have t₁ : (fun w ↦ fderiv 𝕜 f w) =ᶠ[nhds z] f' := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use u
|
||||
constructor
|
||||
· exact h₁u
|
||||
· intro x hx
|
||||
exact HasFDerivAt.fderiv (h₂u x hx)
|
||||
rw [Filter.EventuallyEq.differentiableAt_iff t₁]
|
||||
exact hf'.differentiableAt le_rfl
|
||||
|
||||
-- DifferentiableAt 𝕜 (fun w => a) z
|
||||
exact differentiableAt_const a
|
||||
|
||||
|
||||
section restrictScalars
|
||||
|
||||
theorem partialDeriv_smul'₂
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
[IsScalarTower 𝕜 𝕜' F]
|
||||
{f : E → F} {a : 𝕜'} {v : E} :
|
||||
partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
variable (𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
variable {𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||||
variable [IsScalarTower 𝕜 𝕜' E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
variable [IsScalarTower 𝕜 𝕜' F]
|
||||
--variable {f : E → F}
|
||||
|
||||
funext w
|
||||
by_cases ha : a = 0
|
||||
· unfold partialDeriv
|
||||
have : a • f = fun y ↦ a • f y := by rfl
|
||||
rw [this, ha]
|
||||
simp
|
||||
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
|
||||
let smulCLM : F ≃L[𝕜] F :=
|
||||
{
|
||||
toFun := fun x ↦ a • x
|
||||
map_add' := fun x y => DistribSMul.smul_add a x y
|
||||
map_smul' := fun m x => (smul_comm ((RingHom.id 𝕜) m) a x).symm
|
||||
invFun := fun x ↦ a⁻¹ • x
|
||||
left_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
|
||||
right_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
|
||||
continuous_toFun := continuous_const_smul a
|
||||
continuous_invFun := continuous_const_smul a⁻¹
|
||||
}
|
||||
|
||||
have : a • f = smulCLM ∘ f := by tauto
|
||||
rw [this]
|
||||
rw [partialDeriv_compCLE]
|
||||
tauto
|
||||
|
||||
|
||||
theorem partialDeriv_restrictScalars
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||||
[IsScalarTower 𝕜 𝕜' E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
[IsScalarTower 𝕜 𝕜' F]
|
||||
{f : E → F} {v : E} :
|
||||
theorem partialDeriv_restrictScalars {f : E → F} {v : E} :
|
||||
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
|
||||
intro hf
|
||||
unfold partialDeriv
|
||||
|
@ -353,57 +140,3 @@ theorem partialDeriv_comm
|
|||
rw [← partialDeriv_fderiv ℝ h z v₂ v₁]
|
||||
rw [derivSymm]
|
||||
rw [partialDeriv_fderiv ℝ h z v₁ v₂]
|
||||
|
||||
|
||||
theorem partialDeriv_commOn
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
{s : Set E}
|
||||
{f : E → F}
|
||||
(hs : IsOpen s)
|
||||
(h : ContDiffOn ℝ 2 f s) :
|
||||
∀ v₁ v₂ : E, ∀ z ∈ s, partialDeriv ℝ v₁ (partialDeriv ℝ v₂ f) z = partialDeriv ℝ v₂ (partialDeriv ℝ v₁ f) z := by
|
||||
|
||||
intro v₁ v₂ z hz
|
||||
|
||||
have derivSymm :
|
||||
(fderiv ℝ (fun w => fderiv ℝ f w) z) v₁ v₂ = (fderiv ℝ (fun w => fderiv ℝ f w) z) v₂ v₁ := by
|
||||
|
||||
let f' := fderiv ℝ f
|
||||
have h₀1 : ∀ y ∈ s, HasFDerivAt f (f' y) y := by
|
||||
intro y hy
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hy)
|
||||
apply h.differentiableOn one_le_two
|
||||
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 h).2
|
||||
|
||||
have h₀' : ∀ᶠ (y : E) in nhds z, HasFDerivAt f (f' y) y := by
|
||||
apply eventually_nhds_iff.mpr
|
||||
use s
|
||||
|
||||
exact second_derivative_symmetric_of_eventually h₀' h₁ v₁ v₂
|
||||
|
||||
rw [← partialDeriv_fderivOn ℝ hs h v₂ v₁ z hz]
|
||||
rw [derivSymm]
|
||||
rw [← partialDeriv_fderivOn ℝ hs h v₁ v₂ z hz]
|
||||
|
||||
|
||||
theorem partialDeriv_commAt
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
{z : E}
|
||||
{f : E → F}
|
||||
(h : ContDiffAt ℝ 2 f z) :
|
||||
∀ v₁ v₂ : E, partialDeriv ℝ v₁ (partialDeriv ℝ v₂ f) z = partialDeriv ℝ v₂ (partialDeriv ℝ v₁ f) z := by
|
||||
|
||||
obtain ⟨u, hu₁, hu₂⟩ := h.contDiffOn le_rfl
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
|
||||
intro v₁ v₂
|
||||
exact partialDeriv_commOn hv₂ (hu₂.mono hv₁) v₁ v₂ z hv₃
|
||||
|
|
|
@ -1,40 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
--import Mathlib.Analysis.Complex.Module
|
||||
|
||||
|
||||
|
||||
example simplificationTest₁
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] [IsScalarTower ℝ ℂ E]
|
||||
{v : E}
|
||||
{z : ℂ} :
|
||||
z • v = z.re • v + Complex.I • z.im • v := by
|
||||
|
||||
/-
|
||||
An attempt to write "rw [add_smul]" will fail with "did not find instance of
|
||||
the pattern in the target -- expression (?r + ?s) • ?x".
|
||||
-/
|
||||
sorry
|
||||
|
||||
|
||||
theorem add_smul'
|
||||
(𝕜₁ : Type*) [NontriviallyNormedField ℝ]
|
||||
{𝕜₂ : Type*} [NontriviallyNormedField ℂ] [NormedAlgebra ℝ ℂ]
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] [IsScalarTower ℝ ℂ E]
|
||||
{v : E}
|
||||
{r s : ℂ} :
|
||||
(r + s) • v = r • v + s • v :=
|
||||
Module.add_smul r s v
|
||||
|
||||
|
||||
theorem smul_add' (a : M) (b₁ b₂ : A) : a • (b₁ + b₂) = a • b₁ + a • b₂ :=
|
||||
DistribSMul.smul_add _ _ _
|
||||
#align smul_add smul_add
|
||||
|
||||
|
||||
|
||||
|
||||
example simplificationTest₂
|
||||
{v : E}
|
||||
{z : ℂ} :
|
||||
z • v = z.re • v + Complex.I • z.im • v := by
|
||||
sorry
|
Loading…
Reference in New Issue