Compare commits

...

4 Commits

Author SHA1 Message Date
Stefan Kebekus 348492cc94 Update complexHarmonic.lean 2024-05-17 12:31:36 +02:00
Stefan Kebekus 82fdc5ac37 Update complexHarmonic.lean 2024-05-17 10:09:14 +02:00
Stefan Kebekus bcb639a5be Fix errors 2024-05-17 09:19:24 +02:00
Stefan Kebekus aeda1e981d Update complexHarmonic.lean 2024-05-17 09:05:15 +02:00
2 changed files with 95 additions and 284 deletions

View File

@ -44,7 +44,7 @@ theorem CauchyRiemann₃ : (DifferentiableAt f z)
simp simp
theorem CauchyRiemann₄ {f : } : (Differentiable f) theorem CauchyRiemann₄ {F : Type*} [NormedAddCommGroup F] [NormedSpace F] {f : → F} : (Differentiable f)
→ partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by → partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by
intro h intro h
unfold partialDeriv unfold partialDeriv

View File

@ -26,6 +26,36 @@ def Harmonic (f : → F) : Prop :=
(ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0) (ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0)
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
Harmonic (f₁ + f₂) := by
constructor
· exact ContDiff.add h₁.1 h₂.1
· rw [laplace_add h₁.1 h₂.1]
simp
intro z
rw [h₁.2 z, h₂.2 z]
simp
theorem harmonic_smul_const_is_harmonic {f : → F} {c : } (h : Harmonic f) :
Harmonic (c • f) := by
constructor
· exact ContDiff.const_smul c h.1
· rw [laplace_smul h.1]
dsimp
intro z
rw [h.2 z]
simp
theorem harmonic_iff_smul_const_is_harmonic {f : → F} {c : } (hc : c ≠ 0) :
Harmonic f ↔ Harmonic (c • f) := by
constructor
· exact harmonic_smul_const_is_harmonic
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
exact fun a => harmonic_smul_const_is_harmonic a
theorem harmonic_comp_CLM_is_harmonic {f : → F₁} {l : F₁ →L[] G} (h : Harmonic f) : theorem harmonic_comp_CLM_is_harmonic {f : → F₁} {l : F₁ →L[] G} (h : Harmonic f) :
Harmonic (l ∘ f) := by Harmonic (l ∘ f) := by
@ -33,13 +63,13 @@ theorem harmonic_comp_CLM_is_harmonic {f : → F₁} {l : F₁ →L[] G}
· -- Continuous differentiability · -- Continuous differentiability
apply ContDiff.comp apply ContDiff.comp
exact ContinuousLinearMap.contDiff l exact ContinuousLinearMap.contDiff l
exact ContDiff.restrict_scalars (Differentiable.contDiff h) exact h.1
· rw [laplace_compContLin] · rw [laplace_compContLin]
simp simp
intro z intro z
rw [h.2 z] rw [h.2 z]
simp simp
exact ContDiff.restrict_scalars (Differentiable.contDiff h) exact ContDiff.restrict_scalars h.1
theorem harmonic_iff_comp_CLE_is_harmonic {f : → F₁} {l : F₁ ≃L[] G₁} : theorem harmonic_iff_comp_CLE_is_harmonic {f : → F₁} {l : F₁ ≃L[] G₁} :
@ -78,21 +108,17 @@ theorem holomorphic_is_harmonic {f : → F₁} (h : Differentiable f) :
-- This lemma says that partial derivatives commute with complex scalar -- This lemma says that partial derivatives commute with complex scalar
-- multiplication. This is a consequence of partialDeriv_compContLin once we -- multiplication. This is a consequence of partialDeriv_compContLin once we
-- note that complex scalar multiplication is continuous -linear. -- note that complex scalar multiplication is continuous -linear.
have : ∀ v, ∀ s : , ∀ g : , Differentiable g → partialDeriv v (s • g) = s • (partialDeriv v g) := by have : ∀ v, ∀ s : , ∀ g : F₁, Differentiable g → partialDeriv v (s • g) = s • (partialDeriv v g) := by
intro v s g hg intro v s g hg
-- Present scalar multiplication as a continuous -linear map. This is -- Present scalar multiplication as a continuous -linear map. This is
-- horrible, there must be better ways to do that. -- horrible, there must be better ways to do that.
let sMuls : →L[] := let sMuls : F₁ →L[] F₁ :=
{ {
toFun := fun x ↦ s * x toFun := fun x ↦ s • x
map_add' := by map_add' := by exact fun x y => DistribSMul.smul_add s x y
intro x y map_smul' := by exact fun m x => (smul_comm ((RingHom.id ) m) s x).symm
ring cont := continuous_const_smul s
map_smul' := by
intro m x
simp
ring
} }
-- Bring the goal into a form that is recognized by -- Bring the goal into a form that is recognized by
@ -129,6 +155,12 @@ theorem im_of_holomorphic_is_harmonic {f : } (h : Differentiable
exact holomorphic_is_harmonic h exact holomorphic_is_harmonic h
theorem antiholomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic (Complex.conjCLE ∘ f) := by
apply harmonic_iff_comp_CLE_is_harmonic.1
exact holomorphic_is_harmonic h
theorem log_normSq_of_holomorphic_is_harmonic theorem log_normSq_of_holomorphic_is_harmonic
{f : } {f : }
(h₁ : Differentiable f) (h₁ : Differentiable f)
@ -136,109 +168,21 @@ theorem log_normSq_of_holomorphic_is_harmonic
(h₃ : ∀ z, f z ∈ Complex.slitPlane) : (h₃ : ∀ z, f z ∈ Complex.slitPlane) :
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ) ∘ f) * f)) from by
/- We start with a number of lemmas on regularity of all the functions involved -/ have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ) ∘ f) * f) := by
-- The norm square is real C²
have normSq_is_real_C2 : ContDiff 2 Complex.normSq := by
unfold Complex.normSq
simp
conv =>
arg 3
intro x
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
apply ContDiff.add
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.imCLM
apply ContinuousLinearMap.contDiff Complex.imCLM
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h₁)
-- Complex.log ∘ f is real C²
have log_f_is_holomorphic : Differentiable (Complex.log ∘ f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
-- Real.log |f|² is real C²
have t₄ : ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
have t₂ : Complex.log ∘ ⇑(starRingEnd ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
rfl
exact Complex.slitPlane_arg_ne_pi (h₃ z)
constructor
· -- logabs f is real C²
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
funext z funext z
simp simp
unfold Complex.abs rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
simp rw [Complex.normSq_eq_conj_mul_self]
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this] rw [this]
exact hyp
have : (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : )⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
exact rfl
rw [this]
apply ContDiff.const_smul
exact t₄
· -- Laplace vanishes
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this]
rw [laplace_smul]
simp
have : ∀ (z : ), Complex.laplace (Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 ↔ Complex.laplace (Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 := by
intro z
rw [laplace_compContLin]
simp
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
conv =>
intro z
rw [this z]
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f := by
unfold Function.comp
funext z
apply Complex.ofReal_log
exact Complex.normSq_nonneg (f z)
rw [this]
have : Complex.ofRealCLM ∘ ⇑Complex.normSq ∘ f = ((starRingEnd ) ∘ f) * f := by
funext z
simp
exact Complex.normSq_eq_conj_mul_self
rw [this]
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ) ∘ f + Complex.log ∘ f)
-- THIS IS WHERE WE USE h₃
have : Complex.log ∘ (⇑(starRingEnd ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ) ∘ f + Complex.log ∘ f := by have : Complex.log ∘ (⇑(starRingEnd ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ) ∘ f + Complex.log ∘ f := by
unfold Function.comp unfold Function.comp
funext z funext z
@ -259,28 +203,23 @@ theorem log_normSq_of_holomorphic_is_harmonic
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z) exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
exact h₂ z exact h₂ z
rw [this] rw [this]
rw [laplace_add]
rw [t₂, laplace_compCLE] apply harmonic_add_harmonic_is_harmonic
have : Complex.log ∘ ⇑(starRingEnd ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
rfl
exact Complex.slitPlane_arg_ne_pi (h₃ z)
rw [this]
rw [← harmonic_iff_comp_CLE_is_harmonic]
repeat
apply holomorphic_is_harmonic
intro z intro z
simp apply DifferentiableAt.comp
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z] exact Complex.differentiableAt_log (h₃ z)
simp exact h₁ z
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ ⇑(starRingEnd ) ∘ f)
rw [t₂]
apply ContDiff.comp
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
theorem logabs_of_holomorphic_is_harmonic theorem logabs_of_holomorphic_is_harmonic
@ -290,55 +229,7 @@ theorem logabs_of_holomorphic_is_harmonic
(h₃ : ∀ z, f z ∈ Complex.slitPlane) : (h₃ : ∀ z, f z ∈ Complex.slitPlane) :
Harmonic (fun z ↦ Real.log ‖f z‖) := by Harmonic (fun z ↦ Real.log ‖f z‖) := by
/- We start with a number of lemmas on regularity of all the functions involved -/ -- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
-- The norm square is real C²
have normSq_is_real_C2 : ContDiff 2 Complex.normSq := by
unfold Complex.normSq
simp
conv =>
arg 3
intro x
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
apply ContDiff.add
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.imCLM
apply ContinuousLinearMap.contDiff Complex.imCLM
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h₁)
-- Complex.log ∘ f is real C²
have log_f_is_holomorphic : Differentiable (Complex.log ∘ f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
-- Real.log |f|² is real C²
have t₄ : ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
have t₂ : Complex.log ∘ ⇑(starRingEnd ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
rfl
exact Complex.slitPlane_arg_ne_pi (h₃ z)
constructor
· -- logabs f is real C²
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
funext z funext z
simp simp
@ -349,87 +240,7 @@ theorem logabs_of_holomorphic_is_harmonic
exact Complex.normSq_nonneg (f z) exact Complex.normSq_nonneg (f z)
rw [this] rw [this]
have : (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : )⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by -- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
exact rfl apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
rw [this]
apply ContDiff.const_smul
exact t₄
· -- Laplace vanishes exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this]
rw [laplace_smul]
simp
have : ∀ (z : ), Complex.laplace (Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 ↔ Complex.laplace (Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 := by
intro z
rw [laplace_compContLin]
simp
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
conv =>
intro z
rw [this z]
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f := by
unfold Function.comp
funext z
apply Complex.ofReal_log
exact Complex.normSq_nonneg (f z)
rw [this]
have : Complex.ofRealCLM ∘ ⇑Complex.normSq ∘ f = ((starRingEnd ) ∘ f) * f := by
funext z
simp
exact Complex.normSq_eq_conj_mul_self
rw [this]
have : Complex.log ∘ (⇑(starRingEnd ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ) ∘ f + Complex.log ∘ f := by
unfold Function.comp
funext z
simp
rw [Complex.log_mul_eq_add_log_iff]
have : Complex.arg ((starRingEnd ) (f z)) = - Complex.arg (f z) := by
rw [Complex.arg_conj]
have : ¬ Complex.arg (f z) = Real.pi := by
exact Complex.slitPlane_arg_ne_pi (h₃ z)
simp
tauto
rw [this]
simp
constructor
· exact Real.pi_pos
· exact Real.pi_nonneg
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
exact h₂ z
rw [this]
rw [laplace_add]
rw [t₂, laplace_compCLE]
intro z
simp
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
simp
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ ⇑(starRingEnd ) ∘ f)
rw [t₂]
apply ContDiff.comp
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄