|
|
|
@ -26,20 +26,50 @@ def Harmonic (f : ℂ → F) : Prop :=
|
|
|
|
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
|
|
|
|
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
|
|
|
|
|
Harmonic (f₁ + f₂) := by
|
|
|
|
|
constructor
|
|
|
|
|
· exact ContDiff.add h₁.1 h₂.1
|
|
|
|
|
· rw [laplace_add h₁.1 h₂.1]
|
|
|
|
|
simp
|
|
|
|
|
intro z
|
|
|
|
|
rw [h₁.2 z, h₂.2 z]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) :
|
|
|
|
|
Harmonic (c • f) := by
|
|
|
|
|
constructor
|
|
|
|
|
· exact ContDiff.const_smul c h.1
|
|
|
|
|
· rw [laplace_smul h.1]
|
|
|
|
|
dsimp
|
|
|
|
|
intro z
|
|
|
|
|
rw [h.2 z]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem harmonic_iff_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (hc : c ≠ 0) :
|
|
|
|
|
Harmonic f ↔ Harmonic (c • f) := by
|
|
|
|
|
constructor
|
|
|
|
|
· exact harmonic_smul_const_is_harmonic
|
|
|
|
|
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
|
|
|
|
|
exact fun a => harmonic_smul_const_is_harmonic a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
|
|
|
|
Harmonic (l ∘ f) := by
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· -- Continuous differentiability
|
|
|
|
|
apply ContDiff.comp
|
|
|
|
|
exact ContinuousLinearMap.contDiff l
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
|
|
|
exact h.1
|
|
|
|
|
· rw [laplace_compContLin]
|
|
|
|
|
simp
|
|
|
|
|
intro z
|
|
|
|
|
rw [h.2 z]
|
|
|
|
|
simp
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ h.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
|
|
|
@ -49,7 +79,7 @@ theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ]
|
|
|
|
|
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
exact harmonic_comp_CLM_is_harmonic
|
|
|
|
|
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
|
|
|
|
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
|
|
|
|
funext z
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
simp
|
|
|
|
@ -78,21 +108,17 @@ theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
|
|
|
|
-- This lemma says that partial derivatives commute with complex scalar
|
|
|
|
|
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
|
|
|
|
-- note that complex scalar multiplication is continuous ℝ-linear.
|
|
|
|
|
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → ℂ, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
|
|
|
|
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
|
|
|
|
intro v s g hg
|
|
|
|
|
|
|
|
|
|
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
|
|
|
|
-- horrible, there must be better ways to do that.
|
|
|
|
|
let sMuls : ℂ →L[ℝ] ℂ :=
|
|
|
|
|
let sMuls : F₁ →L[ℝ] F₁ :=
|
|
|
|
|
{
|
|
|
|
|
toFun := fun x ↦ s * x
|
|
|
|
|
map_add' := by
|
|
|
|
|
intro x y
|
|
|
|
|
ring
|
|
|
|
|
map_smul' := by
|
|
|
|
|
intro m x
|
|
|
|
|
simp
|
|
|
|
|
ring
|
|
|
|
|
toFun := fun x ↦ s • x
|
|
|
|
|
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
|
|
|
|
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
|
|
|
|
cont := continuous_const_smul s
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
-- Bring the goal into a form that is recognized by
|
|
|
|
@ -129,6 +155,12 @@ theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ
|
|
|
|
|
exact holomorphic_is_harmonic h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|
|
|
|
Harmonic (Complex.conjCLE ∘ f) := by
|
|
|
|
|
apply harmonic_iff_comp_CLE_is_harmonic.1
|
|
|
|
|
exact holomorphic_is_harmonic h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem log_normSq_of_holomorphic_is_harmonic
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(h₁ : Differentiable ℂ f)
|
|
|
|
@ -136,151 +168,58 @@ theorem log_normSq_of_holomorphic_is_harmonic
|
|
|
|
|
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
|
|
|
|
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
|
|
|
|
|
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
|
|
|
|
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
|
|
|
|
|
|
|
|
|
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
|
|
|
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
|
|
|
|
rw [Complex.normSq_eq_conj_mul_self]
|
|
|
|
|
rw [this]
|
|
|
|
|
exact hyp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- We start with a number of lemmas on regularity of all the functions involved -/
|
|
|
|
|
|
|
|
|
|
-- The norm square is real C²
|
|
|
|
|
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
|
|
|
|
unfold Complex.normSq
|
|
|
|
|
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
|
|
|
|
-- THIS IS WHERE WE USE h₃
|
|
|
|
|
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
conv =>
|
|
|
|
|
arg 3
|
|
|
|
|
intro x
|
|
|
|
|
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
|
|
|
|
|
apply ContDiff.add
|
|
|
|
|
apply ContDiff.mul
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
|
|
|
|
apply ContDiff.mul
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
|
|
|
|
rw [Complex.log_mul_eq_add_log_iff]
|
|
|
|
|
|
|
|
|
|
-- f is real C²
|
|
|
|
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
|
|
|
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
|
|
|
|
|
|
|
|
|
-- Complex.log ∘ f is real C²
|
|
|
|
|
have log_f_is_holomorphic : Differentiable ℂ (Complex.log ∘ f) := by
|
|
|
|
|
intro z
|
|
|
|
|
apply DifferentiableAt.comp
|
|
|
|
|
exact Complex.differentiableAt_log (h₃ z)
|
|
|
|
|
exact h₁ z
|
|
|
|
|
|
|
|
|
|
-- Real.log |f|² is real C²
|
|
|
|
|
have t₄ : ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
|
|
|
|
|
rw [contDiff_iff_contDiffAt]
|
|
|
|
|
intro z
|
|
|
|
|
apply ContDiffAt.comp
|
|
|
|
|
apply Real.contDiffAt_log.mpr
|
|
|
|
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
|
|
|
|
rw [Complex.arg_conj]
|
|
|
|
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
|
|
|
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
|
|
|
simp
|
|
|
|
|
tauto
|
|
|
|
|
rw [this]
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· exact Real.pi_pos
|
|
|
|
|
· exact Real.pi_nonneg
|
|
|
|
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
|
|
|
|
exact h₂ z
|
|
|
|
|
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
|
|
|
|
exact ContDiff.contDiffAt f_is_real_C2
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
|
|
|
|
apply harmonic_add_harmonic_is_harmonic
|
|
|
|
|
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
|
|
|
|
funext z
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
rw [Complex.log_conj]
|
|
|
|
|
rfl
|
|
|
|
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· -- logabs f is real C²
|
|
|
|
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
unfold Complex.abs
|
|
|
|
|
simp
|
|
|
|
|
rw [Real.log_sqrt]
|
|
|
|
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
|
|
|
|
exact rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply ContDiff.const_smul
|
|
|
|
|
exact t₄
|
|
|
|
|
|
|
|
|
|
· -- Laplace vanishes
|
|
|
|
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
unfold Complex.abs
|
|
|
|
|
simp
|
|
|
|
|
rw [Real.log_sqrt]
|
|
|
|
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [laplace_smul]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
have : ∀ (z : ℂ), Complex.laplace (Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 ↔ Complex.laplace (Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 := by
|
|
|
|
|
intro z
|
|
|
|
|
rw [laplace_compContLin]
|
|
|
|
|
simp
|
|
|
|
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
exact t₄
|
|
|
|
|
conv =>
|
|
|
|
|
intro z
|
|
|
|
|
rw [this z]
|
|
|
|
|
|
|
|
|
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f := by
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
funext z
|
|
|
|
|
apply Complex.ofReal_log
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : Complex.ofRealCLM ∘ ⇑Complex.normSq ∘ f = ((starRingEnd ℂ) ∘ f) * f := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
exact Complex.normSq_eq_conj_mul_self
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
rw [Complex.log_mul_eq_add_log_iff]
|
|
|
|
|
|
|
|
|
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
|
|
|
|
rw [Complex.arg_conj]
|
|
|
|
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
|
|
|
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
|
|
|
simp
|
|
|
|
|
tauto
|
|
|
|
|
rw [this]
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· exact Real.pi_pos
|
|
|
|
|
· exact Real.pi_nonneg
|
|
|
|
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
|
|
|
|
exact h₂ z
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [laplace_add]
|
|
|
|
|
|
|
|
|
|
rw [t₂, laplace_compCLE]
|
|
|
|
|
repeat
|
|
|
|
|
apply holomorphic_is_harmonic
|
|
|
|
|
intro z
|
|
|
|
|
simp
|
|
|
|
|
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f)
|
|
|
|
|
rw [t₂]
|
|
|
|
|
apply ContDiff.comp
|
|
|
|
|
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
exact t₄
|
|
|
|
|
apply DifferentiableAt.comp
|
|
|
|
|
exact Complex.differentiableAt_log (h₃ z)
|
|
|
|
|
exact h₁ z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem logabs_of_holomorphic_is_harmonic
|
|
|
|
@ -290,146 +229,18 @@ theorem logabs_of_holomorphic_is_harmonic
|
|
|
|
|
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
|
|
|
|
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
|
|
|
|
|
|
|
|
|
/- We start with a number of lemmas on regularity of all the functions involved -/
|
|
|
|
|
|
|
|
|
|
-- The norm square is real C²
|
|
|
|
|
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
|
|
|
|
unfold Complex.normSq
|
|
|
|
|
simp
|
|
|
|
|
conv =>
|
|
|
|
|
arg 3
|
|
|
|
|
intro x
|
|
|
|
|
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
|
|
|
|
|
apply ContDiff.add
|
|
|
|
|
apply ContDiff.mul
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
|
|
|
|
apply ContDiff.mul
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
|
|
|
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
|
|
|
|
|
|
|
|
|
-- f is real C²
|
|
|
|
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
|
|
|
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
|
|
|
|
|
|
|
|
|
-- Complex.log ∘ f is real C²
|
|
|
|
|
have log_f_is_holomorphic : Differentiable ℂ (Complex.log ∘ f) := by
|
|
|
|
|
intro z
|
|
|
|
|
apply DifferentiableAt.comp
|
|
|
|
|
exact Complex.differentiableAt_log (h₃ z)
|
|
|
|
|
exact h₁ z
|
|
|
|
|
|
|
|
|
|
-- Real.log |f|² is real C²
|
|
|
|
|
have t₄ : ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
|
|
|
|
|
rw [contDiff_iff_contDiffAt]
|
|
|
|
|
intro z
|
|
|
|
|
apply ContDiffAt.comp
|
|
|
|
|
apply Real.contDiffAt_log.mpr
|
|
|
|
|
simp
|
|
|
|
|
exact h₂ z
|
|
|
|
|
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
|
|
|
|
exact ContDiff.contDiffAt f_is_real_C2
|
|
|
|
|
|
|
|
|
|
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
|
|
|
|
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
funext z
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
rw [Complex.log_conj]
|
|
|
|
|
rfl
|
|
|
|
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· -- logabs f is real C²
|
|
|
|
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
unfold Complex.abs
|
|
|
|
|
simp
|
|
|
|
|
rw [Real.log_sqrt]
|
|
|
|
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
|
|
|
|
exact rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply ContDiff.const_smul
|
|
|
|
|
exact t₄
|
|
|
|
|
|
|
|
|
|
· -- Laplace vanishes
|
|
|
|
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
unfold Complex.abs
|
|
|
|
|
simp
|
|
|
|
|
rw [Real.log_sqrt]
|
|
|
|
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [laplace_smul]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
have : ∀ (z : ℂ), Complex.laplace (Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 ↔ Complex.laplace (Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 := by
|
|
|
|
|
intro z
|
|
|
|
|
rw [laplace_compContLin]
|
|
|
|
|
simp
|
|
|
|
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
exact t₄
|
|
|
|
|
conv =>
|
|
|
|
|
intro z
|
|
|
|
|
rw [this z]
|
|
|
|
|
|
|
|
|
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f := by
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
funext z
|
|
|
|
|
apply Complex.ofReal_log
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : Complex.ofRealCLM ∘ ⇑Complex.normSq ∘ f = ((starRingEnd ℂ) ∘ f) * f := by
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
exact Complex.normSq_eq_conj_mul_self
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
|
|
|
|
unfold Function.comp
|
|
|
|
|
funext z
|
|
|
|
|
simp
|
|
|
|
|
rw [Complex.log_mul_eq_add_log_iff]
|
|
|
|
|
|
|
|
|
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
|
|
|
|
rw [Complex.arg_conj]
|
|
|
|
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
|
|
|
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
|
|
|
simp
|
|
|
|
|
tauto
|
|
|
|
|
rw [this]
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· exact Real.pi_pos
|
|
|
|
|
· exact Real.pi_nonneg
|
|
|
|
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
|
|
|
|
exact h₂ z
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [laplace_add]
|
|
|
|
|
|
|
|
|
|
rw [t₂, laplace_compCLE]
|
|
|
|
|
intro z
|
|
|
|
|
simp
|
|
|
|
|
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
|
|
|
|
|
unfold Complex.abs
|
|
|
|
|
simp
|
|
|
|
|
rw [Real.log_sqrt]
|
|
|
|
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
|
|
|
exact Complex.normSq_nonneg (f z)
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f)
|
|
|
|
|
rw [t₂]
|
|
|
|
|
apply ContDiff.comp
|
|
|
|
|
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
|
|
|
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
|
|
|
|
|
|
|
|
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
|
|
|
exact t₄
|
|
|
|
|
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|
|
|
|
|