Compare commits

..

2 Commits

Author SHA1 Message Date
Stefan Kebekus dba4e2d9c4 Rename file 2024-09-13 07:42:57 +02:00
Stefan Kebekus fe0d8a5f5e Delete holomorphic_JensenFormula.lean 2024-09-13 07:42:07 +02:00
2 changed files with 412 additions and 584 deletions

View File

@ -1,172 +1,449 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOn_zeroSet import Nevanlinna.analyticOn_zeroSet
import Nevanlinna.harmonicAt_examples import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine import Nevanlinna.specialFunctions_CircleIntegral_affine
open Real
theorem jensen_case_R_eq_one theorem jensen_case_R_eq_one
(f : ) (f : )
(h₁f : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt f z) (h₁f : AnalyticOn f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) (h₂f : f 0 ≠ 0) :
(S : Finset ) log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
(a : S → )
(ha : ∀ s, a s ∈ Metric.ball 0 1)
(F : )
(h₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z)
(h₂F : ∀ z ∈ Metric.closedBall (0 : ) 1, F z ≠ 0)
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) :
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
have h₁U : IsPreconnected (Metric.closedBall (0 : ) 1) := by sorry have h₁U : IsPreconnected (Metric.closedBall (0 : ) 1) :=
have h₂U : IsCompact (Metric.closedBall (0 : ) 1) := by sorry (convex_closedBall (0 : ) 1).isPreconnected
have h₁f : AnalyticOn f (Metric.closedBall (0 : ) 1) := by sorry
have h₂f : ∃ u ∈ (Metric.closedBall (0 : ) 1), f u ≠ 0 := by sorry
let α := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f have h₂U : IsCompact (Metric.closedBall (0 : ) 1) :=
obtain ⟨g, A, h'₁g, h₂g, h₃g⟩ := α isCompact_closedBall 0 1
have h₁g : ∀ z ∈ Metric.closedBall 0 1, HolomorphicAt F z := by sorry
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use 0; simp; exact h₂f
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
let logAbsF := fun w ↦ Real.log ‖F w‖ have h'₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z := by
intro z h₁z
apply AnalyticAt.holomorphicAt
exact h₁F z h₁z
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
apply h₁F z hz
exact h₂F z hz
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
have t₂ : ∀ s, f (a s) = 0 := by
intro s
rw [h₃F]
simp
right
apply Finset.prod_eq_zero_iff.2
use s
simp
let logAbsf := fun w ↦ Real.log ‖f w‖
have s₀ : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
intro z h₁z h₂z intro z h₁z h₂z
dsimp [logAbsf]
rw [h₃F] conv =>
simp_rw [Complex.abs.map_mul] left
rw [Complex.abs_prod] arg 1
rw [h₃F]
rw [smul_eq_mul]
rw [norm_mul]
rw [norm_prod]
left
arg 2
intro b
rw [norm_pow]
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
rw [Real.log_mul] rw [Real.log_mul]
rw [Real.log_prod] rw [Real.log_prod]
rfl conv =>
intro s hs left
simp left
by_contra ha' arg 2
rw [ha'] at h₂z intro s
exact h₂z (t₂ s) rw [Real.log_pow]
dsimp [G]
abel
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
exact this
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
rw [Finset.prod_ne_zero_iff]
exact this
-- Complex.abs (F z) ≠ 0 -- Complex.abs (F z) ≠ 0
simp simp
exact h₂F z h₁z exact h₂F z h₁z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra h'
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
simp at h''
rw [h''] at h₂z
let A := t₂ s
exact h₂z A
have s₁ : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
intro z h₁z h₂z have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [s₀ z h₁z]
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp simp
assumption
have : 0 ∈ Metric.closedBall (0 : ) 1 := by simp have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
rw [s₁ 0 this h₂f] at t₁ ⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
intro a ha
simp at ha
simp
by_contra C
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
have h₀ {x : } : f (circleMap 0 1 x) ≠ 0 := by apply Set.Countable.mono t₀
rw [h₃F] apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
let A := finiteZeros h₁U h₂U h₁f h'₂f
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
ext z
simp
tauto
rw [this]
exact Set.Finite.image Subtype.val A
exact Ne.symm (zero_ne_one' )
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp simp
constructor
· have : (circleMap 0 1 x) ∈ Metric.closedBall (0 : ) 1 := by simp
exact h₂F (circleMap 0 1 x) this
· by_contra h'
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
have : circleMap 0 1 x = a s := by
rw [← sub_zero (circleMap 0 1 x)]
nth_rw 2 [← h₂s]
simp
let A := ha s
rw [← this] at A
simp at A
have {θ} : (circleMap 0 1 θ) ∈ Metric.closedBall (0 : ) 1 := by simp by_contra ha'
simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁ conv at h₂i =>
rw [intervalIntegral.integral_sub] at t₁ arg 1
rw [intervalIntegral.integral_finset_sum] at t₁ rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp [h₂F]
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply DifferentiableAt.continuousAt (𝕜 := )
apply HolomorphicAt.differentiableAt
simp [h'₁F]
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
simp_rw [int₀ (ha _)] at t₁ have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
simp at t₁ = ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (fun x => (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
rw [t₁] funext x
simp
rw [this]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
--have : i.1 ∈ Metric.ball (0 : ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
apply h'₁F z hz
exact h₂F z hz
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
conv at decompose_int_G =>
right
right
arg 2
intro x
right
rw [int₃ x.2]
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
rw [h₃F]
simp simp
have {w : } : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
ring_nf calc π⁻¹ * 2⁻¹ * (2 * π * l)
simp [mul_inv_cancel₀ Real.pi_ne_zero] _ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this] rw [this]
rw [log_mul]
rw [log_prod]
simp simp
rfl
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi) rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h₁f h'₂f).toFinset)]
intro i _
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp simp
by_contra ha' simp
let A := ha i intro x ⟨h₁x, _⟩
rw [← ha'] at A simp
dsimp [AnalyticOn.order] at h₁x
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOn.order.proof_1 h₁f x) h₁x
--
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
simp
apply h₂F
simp
lemma const_mul_circleMap_zero
{R θ : } :
circleMap 0 R θ = R * circleMap 0 1 θ := by
rw [circleMap_zero, circleMap_zero]
simp
theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : AnalyticOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : AnalyticOn F (Metric.closedBall 0 1) := by
apply AnalyticOn.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A simp at A
apply ContinuousAt.comp simp
apply Complex.continuous_abs.continuousAt rw [A]
fun_prop simp_rw [← const_mul_circleMap_zero]
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi) simp
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2 let e : (Metric.closedBall (0 : ) 1) → (Metric.closedBall (0 : ) R) := by
intro ⟨x, hx⟩
have hy : R • x ∈ Metric.closedBall (0 : ) R := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
exact ⟨R • x, hy⟩
let e' : (Metric.closedBall (0 : ) R) → (Metric.closedBall (0 : ) 1) := by
intro ⟨x, hx⟩
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ) 1 := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R⁻¹ * Complex.abs x
_ ≤ R⁻¹ * R := by
apply mul_le_mul_of_nonneg_left hx
apply inv_nonneg.mpr
exact abs_eq_self.mp (id (Eq.symm this))
_ = 1 := by
apply inv_mul_cancel₀
exact Ne.symm (ne_of_lt hR)
exact ⟨R⁻¹ • x, hy⟩
apply finsum_eq_of_bijective e
apply Function.bijective_iff_has_inverse.mpr
use e'
constructor
· apply Function.leftInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
· apply Function.rightInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
intro x intro x
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
simp simp
exact h₀ by_cases hx : x = (0 : )
apply ContinuousAt.comp rw [hx]
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply ContDiffAt.continuousAt (f := f) (𝕜 := ) (n := 1)
apply HolomorphicAt.contDiffAt
apply h₁f
simp simp
let A := continuous_circleMap 0 1
apply A.continuousAt rw [log_mul, log_mul, log_inv, log_inv]
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi) have : R = |R| := by exact Eq.symm (abs_of_pos hR)
apply Continuous.intervalIntegrable rw [← this]
apply continuous_finset_sum
intro i _
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp simp
by_contra ha' left
let A := ha i congr 1
rw [← ha'] at A
simp at A dsimp [AnalyticOn.order]
apply ContinuousAt.comp rw [← AnalyticAt.order_comp_CLE ]
apply Complex.continuous_abs.continuousAt
fun_prop --
simpa
--
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
apply inv_ne_zero
exact Ne.symm (ne_of_lt hR)
--
exact Ne.symm (ne_of_lt hR)
--
simp
constructor
· assumption
· exact Ne.symm (ne_of_lt hR)

View File

@ -1,449 +0,0 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOn_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine
open Real
theorem jensen_case_R_eq_one
(f : )
(h₁f : AnalyticOn f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
have h₁U : IsPreconnected (Metric.closedBall (0 : ) 1) :=
(convex_closedBall (0 : ) 1).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ) 1) :=
isCompact_closedBall 0 1
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use 0; simp; exact h₂f
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z := by
intro z h₁z
apply AnalyticAt.holomorphicAt
exact h₁F z h₁z
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
conv =>
left
arg 1
rw [h₃F]
rw [smul_eq_mul]
rw [norm_mul]
rw [norm_prod]
left
arg 2
intro b
rw [norm_pow]
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
rw [Real.log_mul]
rw [Real.log_prod]
conv =>
left
left
arg 2
intro s
rw [Real.log_pow]
dsimp [G]
abel
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
exact this
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
rw [Finset.prod_ne_zero_iff]
exact this
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z h₁z
have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
intro a ha
simp at ha
simp
by_contra C
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
let A := finiteZeros h₁U h₂U h₁f h'₂f
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
ext z
simp
tauto
rw [this]
exact Set.Finite.image Subtype.val A
exact Ne.symm (zero_ne_one' )
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp [h₂F]
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply DifferentiableAt.continuousAt (𝕜 := )
apply HolomorphicAt.differentiableAt
simp [h'₁F]
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
= ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (fun x => (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
funext x
simp
rw [this]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
--have : i.1 ∈ Metric.ball (0 : ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
apply h'₁F z hz
exact h₂F z hz
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
conv at decompose_int_G =>
right
right
arg 2
intro x
right
rw [int₃ x.2]
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
rw [h₃F]
simp
have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
calc π⁻¹ * 2⁻¹ * (2 * π * l)
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h₁f h'₂f).toFinset)]
simp
simp
intro x ⟨h₁x, _⟩
simp
dsimp [AnalyticOn.order] at h₁x
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOn.order.proof_1 h₁f x) h₁x
--
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
simp
apply h₂F
simp
lemma const_mul_circleMap_zero
{R θ : } :
circleMap 0 R θ = R * circleMap 0 1 θ := by
rw [circleMap_zero, circleMap_zero]
simp
theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : AnalyticOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : AnalyticOn F (Metric.closedBall 0 1) := by
apply AnalyticOn.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A
simp
rw [A]
simp_rw [← const_mul_circleMap_zero]
simp
let e : (Metric.closedBall (0 : ) 1) → (Metric.closedBall (0 : ) R) := by
intro ⟨x, hx⟩
have hy : R • x ∈ Metric.closedBall (0 : ) R := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
exact ⟨R • x, hy⟩
let e' : (Metric.closedBall (0 : ) R) → (Metric.closedBall (0 : ) 1) := by
intro ⟨x, hx⟩
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ) 1 := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R⁻¹ * Complex.abs x
_ ≤ R⁻¹ * R := by
apply mul_le_mul_of_nonneg_left hx
apply inv_nonneg.mpr
exact abs_eq_self.mp (id (Eq.symm this))
_ = 1 := by
apply inv_mul_cancel₀
exact Ne.symm (ne_of_lt hR)
exact ⟨R⁻¹ • x, hy⟩
apply finsum_eq_of_bijective e
apply Function.bijective_iff_has_inverse.mpr
use e'
constructor
· apply Function.leftInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
· apply Function.rightInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
intro x
simp
by_cases hx : x = (0 : )
rw [hx]
simp
rw [log_mul, log_mul, log_inv, log_inv]
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
simp
left
congr 1
dsimp [AnalyticOn.order]
rw [← AnalyticAt.order_comp_CLE ]
--
simpa
--
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
apply inv_ne_zero
exact Ne.symm (ne_of_lt hR)
--
exact Ne.symm (ne_of_lt hR)
--
simp
constructor
· assumption
· exact Ne.symm (ne_of_lt hR)