Compare commits
2 Commits
3bead7a9bf
...
47e1bfe35e
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 47e1bfe35e | |
Stefan Kebekus | 6651c0852a |
|
@ -125,6 +125,23 @@ theorem HolomorphicAt.analyticAt
|
||||||
exact IsOpen.mem_nhds h₁s h₂s
|
exact IsOpen.mem_nhds h₁s h₂s
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticAt.holomorphicAt
|
||||||
|
[CompleteSpace F]
|
||||||
|
{f : ℂ → F}
|
||||||
|
{x : ℂ} :
|
||||||
|
AnalyticAt ℂ f x → HolomorphicAt f x := by
|
||||||
|
intro hf
|
||||||
|
rw [HolomorphicAt_iff]
|
||||||
|
use {x : ℂ | AnalyticAt ℂ f x}
|
||||||
|
constructor
|
||||||
|
· exact isOpen_analyticAt ℂ f
|
||||||
|
· constructor
|
||||||
|
· simpa
|
||||||
|
· intro z hz
|
||||||
|
simp at hz
|
||||||
|
exact differentiableAt hz
|
||||||
|
|
||||||
|
|
||||||
theorem HolomorphicAt.contDiffAt
|
theorem HolomorphicAt.contDiffAt
|
||||||
[CompleteSpace F]
|
[CompleteSpace F]
|
||||||
{f : ℂ → F}
|
{f : ℂ → F}
|
||||||
|
|
|
@ -7,93 +7,28 @@ import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||||
|
|
||||||
open Real
|
open Real
|
||||||
|
|
||||||
/-
|
lemma h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) :=
|
||||||
noncomputable def Zeroset
|
(convex_closedBall (0 : ℂ) 1).isPreconnected
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{s : Set ℂ}
|
|
||||||
(hf : ∀ z ∈ s, HolomorphicAt f z) :
|
|
||||||
Set ℂ := by
|
|
||||||
exact f⁻¹' {0} ∩ s
|
|
||||||
|
|
||||||
|
lemma h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) :=
|
||||||
|
isCompact_closedBall 0 1
|
||||||
|
|
||||||
noncomputable def ZeroFinset
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
||||||
(h₂f : f 0 ≠ 0) :
|
|
||||||
Finset ℂ := by
|
|
||||||
|
|
||||||
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ℂ) 1
|
|
||||||
have hZ : Set.Finite Z := by
|
|
||||||
dsimp [Z]
|
|
||||||
rw [Set.inter_comm]
|
|
||||||
apply finiteZeros
|
|
||||||
-- Ball is preconnected
|
|
||||||
apply IsConnected.isPreconnected
|
|
||||||
apply Convex.isConnected
|
|
||||||
exact convex_closedBall 0 1
|
|
||||||
exact Set.nonempty_of_nonempty_subtype
|
|
||||||
--
|
|
||||||
exact isCompact_closedBall 0 1
|
|
||||||
--
|
|
||||||
intro x hx
|
|
||||||
have A := (h₁f x hx)
|
|
||||||
let B := HolomorphicAt_iff.1 A
|
|
||||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := B
|
|
||||||
apply DifferentiableOn.analyticAt (s := s)
|
|
||||||
intro z hz
|
|
||||||
apply DifferentiableAt.differentiableWithinAt
|
|
||||||
apply h₃s
|
|
||||||
exact hz
|
|
||||||
exact IsOpen.mem_nhds h₁s h₂s
|
|
||||||
--
|
|
||||||
use 0
|
|
||||||
constructor
|
|
||||||
· simp
|
|
||||||
· exact h₂f
|
|
||||||
exact hZ.toFinset
|
|
||||||
|
|
||||||
|
|
||||||
lemma ZeroFinset_mem_iff
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
||||||
{h₂f : f 0 ≠ 0}
|
|
||||||
(z : ℂ) :
|
|
||||||
z ∈ ↑(ZeroFinset h₁f h₂f) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
|
|
||||||
dsimp [ZeroFinset]; simp
|
|
||||||
tauto
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def order
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z}
|
|
||||||
{h₂f : f 0 ≠ 0} :
|
|
||||||
ZeroFinset h₁f h₂f → ℕ := by
|
|
||||||
intro i
|
|
||||||
let A := ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
|
||||||
let B := (h₁f i.1 A).analyticAt
|
|
||||||
exact B.order.toNat
|
|
||||||
-/
|
|
||||||
|
|
||||||
theorem jensen_case_R_eq_one
|
theorem jensen_case_R_eq_one
|
||||||
(f : ℂ → ℂ)
|
(f : ℂ → ℂ)
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
||||||
(h'₁f : AnalyticOn ℂ f (Metric.closedBall (0 : ℂ) 1))
|
(h'₁f : AnalyticOn ℂ f (Metric.closedBall (0 : ℂ) 1))
|
||||||
(h₂f : f 0 ≠ 0) :
|
(h₂f : f 0 ≠ 0) :
|
||||||
log ‖f 0‖ = -∑ᶠ s, (h'₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
|
log ‖f 0‖ = -∑ᶠ s, (h'₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
|
||||||
|
|
||||||
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) :=
|
|
||||||
(convex_closedBall (0 : ℂ) 1).isPreconnected
|
|
||||||
|
|
||||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) :=
|
|
||||||
isCompact_closedBall 0 1
|
|
||||||
|
|
||||||
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
||||||
use 0; simp; exact h₂f
|
use 0; simp; exact h₂f
|
||||||
|
|
||||||
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h'₁f h'₂f
|
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h'₁f h'₂f
|
||||||
|
|
||||||
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by
|
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by
|
||||||
sorry
|
intro z h₁z
|
||||||
|
apply AnalyticAt.holomorphicAt
|
||||||
|
exact h₁F z h₁z
|
||||||
|
|
||||||
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order s).toNat * log ‖z - s‖
|
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order s).toNat * log ‖z - s‖
|
||||||
|
|
||||||
|
@ -149,7 +84,7 @@ theorem jensen_case_R_eq_one
|
||||||
exact h₂F z h₁z
|
exact h₂F z h₁z
|
||||||
|
|
||||||
|
|
||||||
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||||
|
|
||||||
rw [intervalIntegral.integral_congr_ae]
|
rw [intervalIntegral.integral_congr_ae]
|
||||||
rw [MeasureTheory.ae_iff]
|
rw [MeasureTheory.ae_iff]
|
||||||
|
@ -180,11 +115,7 @@ theorem jensen_case_R_eq_one
|
||||||
exact Ne.symm (zero_ne_one' ℝ)
|
exact Ne.symm (zero_ne_one' ℝ)
|
||||||
|
|
||||||
|
|
||||||
have h₁Gi : ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
||||||
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
|
||||||
sorry
|
|
||||||
|
|
||||||
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
|
||||||
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
||||||
+ ∑ x ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order x).toNat * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
+ ∑ x ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order x).toNat * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||||
dsimp [G]
|
dsimp [G]
|
||||||
|
@ -195,7 +126,7 @@ theorem jensen_case_R_eq_one
|
||||||
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
||||||
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
||||||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||||
intro i hi
|
intro i _
|
||||||
apply IntervalIntegrable.const_mul
|
apply IntervalIntegrable.const_mul
|
||||||
--simp at this
|
--simp at this
|
||||||
by_cases h₂i : ‖i.1‖ = 1
|
by_cases h₂i : ‖i.1‖ = 1
|
||||||
|
@ -250,7 +181,7 @@ theorem jensen_case_R_eq_one
|
||||||
simp
|
simp
|
||||||
rw [this]
|
rw [this]
|
||||||
apply IntervalIntegrable.sum
|
apply IntervalIntegrable.sum
|
||||||
intro i h₂i
|
intro i _
|
||||||
apply IntervalIntegrable.const_mul
|
apply IntervalIntegrable.const_mul
|
||||||
--have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2
|
--have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2
|
||||||
--simp at this
|
--simp at this
|
||||||
|
@ -290,9 +221,65 @@ theorem jensen_case_R_eq_one
|
||||||
exact h₂F z hz
|
exact h₂F z hz
|
||||||
|
|
||||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||||
simp_rw [← Complex.norm_eq_abs] at this
|
|
||||||
rw [t₁] at this
|
|
||||||
|
|
||||||
|
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
|
||||||
|
rw [t₁] at decompose_int_G
|
||||||
|
|
||||||
|
conv at decompose_int_G =>
|
||||||
|
right
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro x
|
||||||
|
right
|
||||||
|
rw [int₃ x.2]
|
||||||
|
simp at decompose_int_G
|
||||||
|
|
||||||
sorry
|
rw [int_logAbs_f_eq_int_G]
|
||||||
|
rw [decompose_int_G]
|
||||||
|
rw [h₃F]
|
||||||
|
simp
|
||||||
|
have {l : ℝ} : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
|
||||||
|
calc π⁻¹ * 2⁻¹ * (2 * π * l)
|
||||||
|
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
|
||||||
|
_ = π⁻¹ * π * l := by ring
|
||||||
|
_ = (π⁻¹ * π) * l := by ring
|
||||||
|
_ = 1 * l := by
|
||||||
|
rw [inv_mul_cancel₀]
|
||||||
|
exact pi_ne_zero
|
||||||
|
_ = l := by simp
|
||||||
|
rw [this]
|
||||||
|
rw [log_mul]
|
||||||
|
rw [log_prod]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset)]
|
||||||
|
simp
|
||||||
|
simp
|
||||||
|
intro x ⟨h₁x, _⟩
|
||||||
|
simp
|
||||||
|
|
||||||
|
dsimp [AnalyticOn.order] at h₁x
|
||||||
|
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
|
||||||
|
exact AnalyticAt.supp_order_toNat (AnalyticOn.order.proof_1 h'₁f x) h₁x
|
||||||
|
|
||||||
|
--
|
||||||
|
intro x hx
|
||||||
|
simp at hx
|
||||||
|
simp
|
||||||
|
intro h₁x
|
||||||
|
nth_rw 1 [← h₁x] at h₂f
|
||||||
|
tauto
|
||||||
|
|
||||||
|
--
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
intro x hx
|
||||||
|
simp at hx
|
||||||
|
simp
|
||||||
|
intro h₁x
|
||||||
|
nth_rw 1 [← h₁x] at h₂f
|
||||||
|
tauto
|
||||||
|
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
apply h₂F
|
||||||
|
simp
|
||||||
|
|
|
@ -8,10 +8,6 @@ import Nevanlinna.periodic_integrability
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
-- Integrability of periodic functions
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Lemmas for the circleMap
|
-- Lemmas for the circleMap
|
||||||
|
@ -46,6 +42,20 @@ lemma l₂ {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x))
|
||||||
|
|
||||||
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ < 1.
|
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ < 1.
|
||||||
|
|
||||||
|
lemma int'₀
|
||||||
|
{a : ℂ}
|
||||||
|
(ha : a ∈ Metric.ball 0 1) :
|
||||||
|
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - a‖) volume 0 (2 * π) := by
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.log
|
||||||
|
fun_prop
|
||||||
|
simp
|
||||||
|
intro x
|
||||||
|
by_contra h₁a
|
||||||
|
rw [← h₁a] at ha
|
||||||
|
simp at ha
|
||||||
|
|
||||||
|
|
||||||
lemma int₀
|
lemma int₀
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : a ∈ Metric.ball 0 1) :
|
(ha : a ∈ Metric.ball 0 1) :
|
||||||
|
@ -210,7 +220,6 @@ lemma int''₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖ for arbitrary
|
||||||
rw [zero_add]
|
rw [zero_add]
|
||||||
exact int'₁
|
exact int'₁
|
||||||
|
|
||||||
|
|
||||||
lemma int₁ :
|
lemma int₁ :
|
||||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
|
||||||
|
@ -360,3 +369,16 @@ lemma int₂
|
||||||
simp
|
simp
|
||||||
simp_rw [this]
|
simp_rw [this]
|
||||||
exact int₁
|
exact int₁
|
||||||
|
|
||||||
|
|
||||||
|
lemma int₃
|
||||||
|
{a : ℂ}
|
||||||
|
(ha : a ∈ Metric.closedBall 0 1) :
|
||||||
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||||
|
by_cases h₁a : a ∈ Metric.ball 0 1
|
||||||
|
· exact int₀ h₁a
|
||||||
|
· apply int₂
|
||||||
|
simp at ha
|
||||||
|
simp at h₁a
|
||||||
|
simp
|
||||||
|
linarith
|
||||||
|
|
Loading…
Reference in New Issue