Compare commits
No commits in common. "2544242b136a96886c4110ab2e8abcd8dabfcb9f" and "f480ae2a0fb9a69f2a3dbe2ccc96bd65868eeb00" have entirely different histories.
2544242b13
...
f480ae2a0f
|
@ -11,7 +11,6 @@ import Mathlib.Data.Complex.Exponential
|
||||||
import Mathlib.Analysis.RCLike.Basic
|
import Mathlib.Analysis.RCLike.Basic
|
||||||
import Mathlib.Order.Filter.Basic
|
import Mathlib.Order.Filter.Basic
|
||||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||||
import Mathlib.Topology.Basic
|
|
||||||
import Mathlib.Topology.Instances.RealVectorSpace
|
import Mathlib.Topology.Instances.RealVectorSpace
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
@ -80,19 +79,7 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
||||||
Complex.laplace (l ∘ f) x = (l ∘ (Complex.laplace f)) x := by
|
Complex.laplace (l ∘ f) x = (l ∘ (Complex.laplace f)) x := by
|
||||||
|
|
||||||
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||||
have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
sorry
|
||||||
apply ContDiffAt.contDiffOn h
|
|
||||||
rfl
|
|
||||||
obtain ⟨u, hu₁, hu₂⟩ := this
|
|
||||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
|
||||||
use v
|
|
||||||
constructor
|
|
||||||
· exact IsOpen.mem_nhds hv₂ hv₃
|
|
||||||
· constructor
|
|
||||||
exact hv₂
|
|
||||||
constructor
|
|
||||||
· exact hv₃
|
|
||||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
|
||||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
||||||
|
|
||||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||||
|
@ -119,12 +106,13 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
||||||
simp
|
simp
|
||||||
|
|
||||||
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
||||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I)
|
unfold partialDeriv
|
||||||
rfl
|
|
||||||
|
sorry
|
||||||
|
|
||||||
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
||||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1)
|
|
||||||
rfl
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||||
|
|
Loading…
Reference in New Issue