Compare commits
2 Commits
2544242b13
...
ac3cd65bf2
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | ac3cd65bf2 | |
Stefan Kebekus | 7f10e28525 |
|
@ -89,7 +89,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G}
|
||||||
exact ContDiff.restrict_scalars ℝ h.1
|
exact ContDiff.restrict_scalars ℝ h.1
|
||||||
|
|
||||||
|
|
||||||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) :
|
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) :
|
||||||
HarmonicOn (l ∘ f) s := by
|
HarmonicOn (l ∘ f) s := by
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
|
@ -97,15 +97,14 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l :
|
||||||
apply ContDiffOn.continuousLinearMap_comp
|
apply ContDiffOn.continuousLinearMap_comp
|
||||||
exact h.1
|
exact h.1
|
||||||
· -- Vanishing of Laplace
|
· -- Vanishing of Laplace
|
||||||
|
|
||||||
rw [laplace_compContLin]
|
|
||||||
simp
|
|
||||||
intro z zHyp
|
intro z zHyp
|
||||||
|
rw [laplace_compContLinAt]
|
||||||
|
simp
|
||||||
rw [h.2 z]
|
rw [h.2 z]
|
||||||
simp
|
simp
|
||||||
assumption
|
assumption
|
||||||
|
apply ContDiffOn.contDiffAt h.1
|
||||||
|
exact IsOpen.mem_nhds hs zHyp
|
||||||
|
|
||||||
|
|
||||||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||||||
|
@ -200,15 +199,16 @@ theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f)
|
||||||
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{s : Set ℂ}
|
{s : Set ℂ}
|
||||||
|
(hs : IsOpen s)
|
||||||
(h₁ : DifferentiableOn ℂ f s)
|
(h₁ : DifferentiableOn ℂ f s)
|
||||||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||||
|
|
||||||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
||||||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
||||||
|
|
||||||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
||||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||||
funext z
|
funext z
|
||||||
simp
|
simp
|
||||||
|
@ -220,16 +220,16 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
|
|
||||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||||
-- THIS IS WHERE WE USE h₃
|
-- THIS IS WHERE WE USE h₃
|
||||||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
have : ∀ z ∈ s, (Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f)) z = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) z := by
|
||||||
|
intro z hz
|
||||||
unfold Function.comp
|
unfold Function.comp
|
||||||
funext z
|
|
||||||
simp
|
simp
|
||||||
rw [Complex.log_mul_eq_add_log_iff]
|
rw [Complex.log_mul_eq_add_log_iff]
|
||||||
|
|
||||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||||
rw [Complex.arg_conj]
|
rw [Complex.arg_conj]
|
||||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||||
simp
|
simp
|
||||||
tauto
|
tauto
|
||||||
rw [this]
|
rw [this]
|
||||||
|
@ -237,8 +237,9 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
constructor
|
constructor
|
||||||
· exact Real.pi_pos
|
· exact Real.pi_pos
|
||||||
· exact Real.pi_nonneg
|
· exact Real.pi_nonneg
|
||||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||||||
exact h₂ z
|
exact h₂ z hz
|
||||||
|
|
||||||
rw [this]
|
rw [this]
|
||||||
|
|
||||||
apply harmonic_add_harmonic_is_harmonic
|
apply harmonic_add_harmonic_is_harmonic
|
||||||
|
|
Loading…
Reference in New Issue