Compare commits
3 Commits
2146909338
...
a95c34fd05
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | a95c34fd05 | |
Stefan Kebekus | 9d6801c329 | |
Stefan Kebekus | 5cdc786144 |
|
@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||||
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
||||||
import Nevanlinna.analyticAt
|
import Nevanlinna.analyticAt
|
||||||
|
import Nevanlinna.mathlibAddOn
|
||||||
|
|
||||||
open Interval Topology
|
open Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
@ -20,3 +21,73 @@ instance
|
||||||
coe := Divisor.toFun
|
coe := Divisor.toFun
|
||||||
|
|
||||||
attribute [coe] Divisor.toFun
|
attribute [coe] Divisor.toFun
|
||||||
|
|
||||||
|
|
||||||
|
theorem Divisor.discreteSupport
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsClosed U)
|
||||||
|
(D : Divisor U) :
|
||||||
|
DiscreteTopology D.toFun.support := by
|
||||||
|
apply discreteTopology_subtype_iff.mpr
|
||||||
|
intro x hx
|
||||||
|
apply inf_principal_eq_bot.mpr
|
||||||
|
by_cases h₁x : x ∈ U
|
||||||
|
· let A := D.locallyFiniteInU x h₁x
|
||||||
|
refine mem_nhdsWithin.mpr ?_
|
||||||
|
rw [eventuallyEq_nhdsWithin_iff] at A
|
||||||
|
obtain ⟨U, h₁U, h₂U, h₃U⟩ := eventually_nhds_iff.1 A
|
||||||
|
use U
|
||||||
|
constructor
|
||||||
|
· exact h₂U
|
||||||
|
· constructor
|
||||||
|
· exact h₃U
|
||||||
|
· intro y hy
|
||||||
|
let C := h₁U y hy.1 hy.2
|
||||||
|
tauto
|
||||||
|
· refine mem_nhdsWithin.mpr ?_
|
||||||
|
use Uᶜ
|
||||||
|
constructor
|
||||||
|
· simpa
|
||||||
|
· constructor
|
||||||
|
· tauto
|
||||||
|
· intro y _
|
||||||
|
let A := D.supportInU
|
||||||
|
simp at A
|
||||||
|
simp
|
||||||
|
exact False.elim (h₁x (A x hx))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem Divisor.closedSupport
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsClosed U)
|
||||||
|
(D : Divisor U) :
|
||||||
|
IsClosed D.toFun.support := by
|
||||||
|
|
||||||
|
rw [← isOpen_compl_iff]
|
||||||
|
rw [isOpen_iff_eventually]
|
||||||
|
intro x hx
|
||||||
|
by_cases h₁x : x ∈ U
|
||||||
|
· have A := D.locallyFiniteInU x h₁x
|
||||||
|
simp [A]
|
||||||
|
simp at hx
|
||||||
|
let B := Mnhds A hx
|
||||||
|
simpa
|
||||||
|
· rw [eventually_iff_exists_mem]
|
||||||
|
use Uᶜ
|
||||||
|
constructor
|
||||||
|
· exact IsClosed.compl_mem_nhds hU h₁x
|
||||||
|
· intro y hy
|
||||||
|
simp
|
||||||
|
exact Function.nmem_support.mp fun a => hy (D.supportInU a)
|
||||||
|
|
||||||
|
|
||||||
|
theorem Divisor.finiteSupport
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsCompact U)
|
||||||
|
(D : Divisor U) :
|
||||||
|
Set.Finite D.toFun.support := by
|
||||||
|
apply IsCompact.finite
|
||||||
|
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
|
||||||
|
exact D.supportInU
|
||||||
|
· exact D.discreteSupport hU.isClosed
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Add
|
import Mathlib.Analysis.Calculus.FDeriv.Add
|
||||||
|
import Nevanlinna.analyticAt
|
||||||
|
|
||||||
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||||
|
@ -51,3 +52,23 @@ theorem meromorphicAt_congr'
|
||||||
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
|
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
|
||||||
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
|
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
|
||||||
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
|
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
|
||||||
|
|
||||||
|
open Topology Filter
|
||||||
|
|
||||||
|
lemma Mnhds
|
||||||
|
{α : Type}
|
||||||
|
{f g : ℂ → α}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
|
||||||
|
(h₂ : f z₀ = g z₀) :
|
||||||
|
f =ᶠ[𝓝 z₀] g := by
|
||||||
|
apply eventually_nhds_iff.2
|
||||||
|
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
|
||||||
|
use t
|
||||||
|
constructor
|
||||||
|
· intro y hy
|
||||||
|
by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ)
|
||||||
|
· exact h₁t y hy h₂y
|
||||||
|
· simp at h₂y
|
||||||
|
rwa [h₂y]
|
||||||
|
· exact h₂t
|
||||||
|
|
Loading…
Reference in New Issue