Compare commits
2 Commits
1160beac5e
...
567b08aa5b
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 567b08aa5b | |
Stefan Kebekus | 960af65b57 |
|
@ -1,3 +1,4 @@
|
||||||
|
import Nevanlinna.analyticOn_zeroSet
|
||||||
import Nevanlinna.harmonicAt_examples
|
import Nevanlinna.harmonicAt_examples
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
import Nevanlinna.harmonicAt_meanValue
|
||||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||||
|
@ -5,31 +6,38 @@ import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||||
|
|
||||||
theorem jensen_case_R_eq_one
|
theorem jensen_case_R_eq_one
|
||||||
(f : ℂ → ℂ)
|
(f : ℂ → ℂ)
|
||||||
(h₁f : Differentiable ℂ f)
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||||
(h₂f : f 0 ≠ 0)
|
(h₂f : f 0 ≠ 0)
|
||||||
(S : Finset ℕ)
|
(S : Finset ℕ)
|
||||||
(a : S → ℂ)
|
(a : S → ℂ)
|
||||||
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
||||||
(F : ℂ → ℂ)
|
(F : ℂ → ℂ)
|
||||||
(h₁F : Differentiable ℂ F)
|
(h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z)
|
||||||
(h₂F : ∀ z, F z ≠ 0)
|
(h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0)
|
||||||
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
|
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) :
|
||||||
:
|
|
||||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
||||||
|
|
||||||
|
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||||
|
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||||
|
have h₁f : AnalyticOn ℂ f (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||||
|
have h₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by sorry
|
||||||
|
|
||||||
|
let α := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f
|
||||||
|
obtain ⟨g, A, h'₁g, h₂g, h₃g⟩ := α
|
||||||
|
have h₁g : ∀ z ∈ Metric.closedBall 0 1, HolomorphicAt F z := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||||
|
|
||||||
have t₀ : ∀ z ∈ Metric.ball 0 2, HarmonicAt logAbsF z := by
|
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
||||||
intro z _
|
intro z hz
|
||||||
apply logabs_of_holomorphicAt_is_harmonic
|
apply logabs_of_holomorphicAt_is_harmonic
|
||||||
apply h₁F.holomorphicAt
|
apply h₁F z hz
|
||||||
exact h₂F z
|
exact h₂F z hz
|
||||||
|
|
||||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||||
have hR : (0 : ℝ) < (1 : ℝ) := by apply Real.zero_lt_one
|
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||||
have hρ : (1 : ℝ) < (2 : ℝ) := by linarith
|
|
||||||
apply harmonic_meanValue 2 1 hR hρ t₀
|
|
||||||
|
|
||||||
|
|
||||||
have t₂ : ∀ s, f (a s) = 0 := by
|
have t₂ : ∀ s, f (a s) = 0 := by
|
||||||
intro s
|
intro s
|
||||||
|
@ -41,8 +49,8 @@ theorem jensen_case_R_eq_one
|
||||||
simp
|
simp
|
||||||
|
|
||||||
let logAbsf := fun w ↦ Real.log ‖f w‖
|
let logAbsf := fun w ↦ Real.log ‖f w‖
|
||||||
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
have s₀ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
||||||
intro z hz
|
intro z h₁z h₂z
|
||||||
dsimp [logAbsf]
|
dsimp [logAbsf]
|
||||||
rw [h₃F]
|
rw [h₃F]
|
||||||
simp_rw [Complex.abs.map_mul]
|
simp_rw [Complex.abs.map_mul]
|
||||||
|
@ -53,31 +61,34 @@ theorem jensen_case_R_eq_one
|
||||||
intro s hs
|
intro s hs
|
||||||
simp
|
simp
|
||||||
by_contra ha'
|
by_contra ha'
|
||||||
rw [ha'] at hz
|
rw [ha'] at h₂z
|
||||||
exact hz (t₂ s)
|
exact h₂z (t₂ s)
|
||||||
-- Complex.abs (F z) ≠ 0
|
-- Complex.abs (F z) ≠ 0
|
||||||
simp
|
simp
|
||||||
exact h₂F z
|
exact h₂F z h₁z
|
||||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||||||
by_contra h'
|
by_contra h'
|
||||||
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
|
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||||
simp at h''
|
simp at h''
|
||||||
rw [h''] at hz
|
rw [h''] at h₂z
|
||||||
let A := t₂ s
|
let A := t₂ s
|
||||||
exact hz A
|
exact h₂z A
|
||||||
|
|
||||||
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
have s₁ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||||
intro z hz
|
intro z h₁z h₂z
|
||||||
rw [s₀ z hz]
|
rw [s₀ z h₁z]
|
||||||
simp
|
simp
|
||||||
|
assumption
|
||||||
|
|
||||||
rw [s₁ 0 h₂f] at t₁
|
have : 0 ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||||
|
rw [s₁ 0 this h₂f] at t₁
|
||||||
|
|
||||||
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||||
rw [h₃F]
|
rw [h₃F]
|
||||||
simp
|
simp
|
||||||
constructor
|
constructor
|
||||||
· exact h₂F (circleMap 0 1 x)
|
· have : (circleMap 0 1 x) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||||
|
exact h₂F (circleMap 0 1 x) this
|
||||||
· by_contra h'
|
· by_contra h'
|
||||||
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||||
have : circleMap 0 1 x = a s := by
|
have : circleMap 0 1 x = a s := by
|
||||||
|
@ -88,7 +99,8 @@ theorem jensen_case_R_eq_one
|
||||||
rw [← this] at A
|
rw [← this] at A
|
||||||
simp at A
|
simp at A
|
||||||
|
|
||||||
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁
|
have {θ} : (circleMap 0 1 θ) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||||
|
simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁
|
||||||
rw [intervalIntegral.integral_sub] at t₁
|
rw [intervalIntegral.integral_sub] at t₁
|
||||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||||
|
|
||||||
|
@ -133,7 +145,10 @@ theorem jensen_case_R_eq_one
|
||||||
apply ContinuousAt.comp
|
apply ContinuousAt.comp
|
||||||
apply Complex.continuous_abs.continuousAt
|
apply Complex.continuous_abs.continuousAt
|
||||||
apply ContinuousAt.comp
|
apply ContinuousAt.comp
|
||||||
apply h₁f.continuous.continuousAt
|
apply ContDiffAt.continuousAt (f := f) (𝕜 := ℝ) (n := 1)
|
||||||
|
apply HolomorphicAt.contDiffAt
|
||||||
|
apply h₁f
|
||||||
|
simp
|
||||||
let A := continuous_circleMap 0 1
|
let A := continuous_circleMap 0 1
|
||||||
apply A.continuousAt
|
apply A.continuousAt
|
||||||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||||
|
|
|
@ -1,41 +1,163 @@
|
||||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||||
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
|
import Nevanlinna.analyticOn_zeroSet
|
||||||
import Nevanlinna.harmonicAt_examples
|
import Nevanlinna.harmonicAt_examples
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
import Nevanlinna.harmonicAt_meanValue
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
||||||
|
open Real
|
||||||
|
|
||||||
|
|
||||||
lemma xx
|
def ZeroFinset
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{S : Set ℂ}
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z) :
|
||||||
(h₁S : IsPreconnected S)
|
Finset ℂ := by
|
||||||
(h₂S : IsCompact S)
|
|
||||||
(hf : ∀ s ∈ S, AnalyticAt ℂ f s) :
|
|
||||||
∃ o : ℂ → ℕ, ∃ F : ℂ → ℂ, ∀ z ∈ S, (AnalyticAt ℂ F z) ∧ (F z ≠ 0) ∧ (f z = F z * ∏ᶠ s ∈ S, (z - s) ^ (o s)) := by
|
|
||||||
|
|
||||||
let o : ℂ → ℕ := by
|
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ℂ) 1
|
||||||
intro z
|
have hZ : Set.Finite Z := by sorry
|
||||||
if hz : z ∈ S then
|
exact hZ.toFinset
|
||||||
let A := hf z hz
|
|
||||||
let B := A.order
|
|
||||||
|
|
||||||
exact (A.order : ⊤)
|
|
||||||
else
|
|
||||||
exact 0
|
|
||||||
|
|
||||||
|
def order
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{hf : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z} :
|
||||||
|
ZeroFinset hf → ℕ := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma ZeroFinset_mem_iff
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(hf : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||||
|
(z : ℂ) :
|
||||||
|
z ∈ ↑(ZeroFinset hf) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem jensen_case_R_eq_one'
|
theorem jensen_case_R_eq_one
|
||||||
(f : ℂ → ℂ)
|
(f : ℂ → ℂ)
|
||||||
(h₁f : Differentiable ℂ f)
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||||
(h₂f : f 0 ≠ 0)
|
(h'₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, AnalyticAt ℂ f z)
|
||||||
(S : Finset ℕ)
|
(h₂f : f 0 ≠ 0) :
|
||||||
(a : S → ℂ)
|
log ‖f 0‖ = -∑ s : ZeroFinset h₁f, order s * log (‖s.1‖⁻¹) + (2 * π )⁻¹ * ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ := by
|
||||||
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
|
||||||
(F : ℂ → ℂ)
|
have F : ℂ → ℂ := by sorry
|
||||||
(h₁F : Differentiable ℂ F)
|
have h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by sorry
|
||||||
(h₂F : ∀ z, F z ≠ 0)
|
have h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0 := by sorry
|
||||||
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
|
have h₃F : f = fun z ↦ (F z) * ∏ s : ZeroFinset h₁f, (z - s) ^ (order s) := by sorry
|
||||||
:
|
|
||||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
let G := fun z ↦ log ‖F z‖ + ∑ s : ZeroFinset h₁f, (order s) * log ‖z - s‖
|
||||||
|
|
||||||
|
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
||||||
|
intro z h₁z h₂z
|
||||||
|
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
arg 1
|
||||||
|
rw [h₃F]
|
||||||
|
rw [norm_mul]
|
||||||
|
rw [norm_prod]
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro b
|
||||||
|
rw [norm_pow]
|
||||||
|
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
||||||
|
rw [Real.log_mul]
|
||||||
|
rw [Real.log_prod]
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro s
|
||||||
|
rw [Real.log_pow]
|
||||||
|
dsimp [G]
|
||||||
|
|
||||||
|
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
|
||||||
|
simp
|
||||||
|
intro s hs
|
||||||
|
rw [ZeroFinset_mem_iff h₁f s] at hs
|
||||||
|
rw [← hs.2] at h₂z
|
||||||
|
tauto
|
||||||
|
|
||||||
|
-- Complex.abs (F z) ≠ 0
|
||||||
|
simp
|
||||||
|
exact h₂F z h₁z
|
||||||
|
|
||||||
|
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||||||
|
by_contra C
|
||||||
|
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
|
||||||
|
simp at h₂s
|
||||||
|
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
|
||||||
|
tauto
|
||||||
|
|
||||||
|
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||||
|
rw [intervalIntegral.integral_congr_ae]
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
apply Set.Countable.measure_zero
|
||||||
|
simp
|
||||||
|
|
||||||
|
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
||||||
|
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
||||||
|
intro a ha
|
||||||
|
simp at ha
|
||||||
|
simp
|
||||||
|
by_contra C
|
||||||
|
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
|
||||||
|
sorry
|
||||||
|
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
||||||
|
|
||||||
|
apply Set.Countable.mono t₀
|
||||||
|
apply Set.Countable.preimage_circleMap
|
||||||
|
apply Set.Finite.countable
|
||||||
|
apply finiteZeros
|
||||||
|
|
||||||
|
-- IsPreconnected (Metric.closedBall (0 : ℂ) 1)
|
||||||
|
apply IsConnected.isPreconnected
|
||||||
|
apply Convex.isConnected
|
||||||
|
exact convex_closedBall 0 1
|
||||||
|
exact Set.nonempty_of_nonempty_subtype
|
||||||
|
--
|
||||||
|
exact isCompact_closedBall 0 1
|
||||||
|
--
|
||||||
|
exact h'₁f
|
||||||
|
use 0
|
||||||
|
exact ⟨Metric.mem_closedBall_self (zero_le_one' ℝ), h₂f⟩
|
||||||
|
exact Ne.symm (zero_ne_one' ℝ)
|
||||||
|
|
||||||
|
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||||||
|
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f).attach, ↑(order x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||||
|
dsimp [G]
|
||||||
|
rw [intervalIntegral.integral_add]
|
||||||
|
rw [intervalIntegral.integral_finset_sum]
|
||||||
|
simp_rw [intervalIntegral.integral_const_mul]
|
||||||
|
|
||||||
|
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
|
||||||
|
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||||
|
|
||||||
|
-- This won't work, because the function **is not** continuous. Need to fix.
|
||||||
|
intro i hi
|
||||||
|
apply IntervalIntegrable.const_mul
|
||||||
|
exact h₁Gi i hi
|
||||||
|
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply continuous_iff_continuousAt.2
|
||||||
|
intro x
|
||||||
|
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Real.continuousAt_log
|
||||||
|
simp
|
||||||
|
|
||||||
|
by_contra ha'
|
||||||
|
let A := ha i
|
||||||
|
rw [← ha'] at A
|
||||||
|
simp at A
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Complex.continuous_abs.continuousAt
|
||||||
|
fun_prop
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue