Compare commits
No commits in common. "0c15de05b88bf3408878fd8fc284260247537547" and "b2f04c1dfa59f079808d46722663294ea434b23e" have entirely different histories.
0c15de05b8
...
b2f04c1dfa
|
@ -30,7 +30,7 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
|||
rw [fderiv.comp]
|
||||
simp
|
||||
fun_prop
|
||||
exact h.restrictScalars ℝ
|
||||
exact h.restrictScalars ℝ
|
||||
apply (ContinuousLinearMap.differentiableAt l).comp
|
||||
exact h.restrictScalars ℝ
|
||||
|
||||
|
|
|
@ -1,39 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
|
||||
noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) := by
|
||||
intro f
|
||||
let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1,0⟩
|
||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1,0⟩
|
||||
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0,1⟩
|
||||
exact f₁₁ + f₂₂
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||
intro f
|
||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
||||
exact f₁₁ + f₂₂
|
||||
|
||||
|
||||
theorem xx : ∀ f : ℂ → , f = 0 := by
|
||||
intro f
|
||||
|
||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||
|
||||
have : ∀ z, fderiv ℂ f z = 0 := by
|
||||
sorry
|
||||
|
||||
|
||||
have : (fun x ↦ lineDeriv ℝ f x 1) = (fun x ↦ lineDeriv ℝ f x Complex.I) := by
|
||||
|
||||
unfold lineDeriv
|
||||
|
||||
sorry
|
||||
|
||||
sorry
|
|
@ -11,6 +11,6 @@ noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) :
|
|||
|
||||
exact f₁₁ + f₂₂
|
||||
|
||||
|
||||
def Harmonic (f : ℝ × ℝ → ℝ) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ x, Real.laplace f x = 0)
|
||||
structure Harmonic (f : ℝ × ℝ → ℝ) : Prop where
|
||||
ker_Laplace : ∀ x, Real.laplace f x = 0
|
||||
cont_Diff : ContDiff ℝ 2 f
|
||||
|
|
Loading…
Reference in New Issue