Update tensor.lean
This commit is contained in:
parent
36c3d0f66b
commit
ff00a0db82
|
@ -0,0 +1,47 @@
|
|||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
|
||||
open RCLike Real Filter
|
||||
open Topology ComplexConjugate
|
||||
open LinearMap (BilinForm)
|
||||
open TensorProduct
|
||||
open InnerProductSpace
|
||||
open Inner
|
||||
|
||||
|
||||
example
|
||||
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [InnerProductSpace ℝ F]
|
||||
: 1 = 0 := by
|
||||
|
||||
let e : E →ₗ[ℝ] E →ₗ[ℝ] ℝ := innerₗ E
|
||||
let f : F →ₗ[ℝ] F →ₗ[ℝ] ℝ := innerₗ F
|
||||
let e₂ := TensorProduct.map₂ e f
|
||||
let l := TensorProduct.lid ℝ ℝ
|
||||
|
||||
have : ∀ e1 e2 : E, ∀ f1 f2 : F, e₂ (e1 ⊗ f1) (e2 ⊗ f2) =
|
||||
|
||||
let X : InnerProductSpace.Core ℝ (E ⊗[ℝ] F) := {
|
||||
inner := by
|
||||
intro a b
|
||||
exact TensorProduct.lid ℝ ℝ ((TensorProduct.map₂ (innerₗ E) (innerₗ F)) a b)
|
||||
conj_symm := by
|
||||
simp
|
||||
intro x y
|
||||
|
||||
unfold innerₗ
|
||||
|
||||
simp
|
||||
sorry
|
||||
nonneg_re := _
|
||||
definite := _
|
||||
add_left := _
|
||||
smul_left := _
|
||||
}
|
||||
|
||||
let inner : E ⊗[𝕜] E → E ⊗[𝕜] E → 𝕜 :=
|
||||
--let x := TensorProduct.lift
|
||||
--E.inner
|
||||
--TensorProduct.map₂
|
||||
sorry
|
||||
sorry
|
Loading…
Reference in New Issue